• Title/Summary/Keyword: rubber compounding

Search Result 83, Processing Time 0.018 seconds

Durability and Reliability Improvement for the Rubber Mount of Industrial Trucks (산업용차량 고무마운트 부품에 대한 내구성 및 신뢰성개선)

  • Jung, Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.3
    • /
    • pp.127-134
    • /
    • 2007
  • Predicting fatigue life of rubber components is an important issue in design procedure for industrial trucks to assure the durability and reliability. Main considerations in designing rubber components against fatigue failure are the compounding technology, shape design, and manufacturing process. Among them the rubber compounding technology is one of the most critical factor to determine more than 50% of component's quality. This paper presents how to improve the durability and reliability of industrial rubber mount during its design, development and prototype testing. The data presented illustrates explicitly the prediction of reliability growth in the product development cycle. The application of these techniques is a part of the product assurance function that plays an important role in rubber components reliability improvement.

Studios on the Various Filters for Rubber Compounds. Part 1. Physical Properties of Domestic Calcium Carbonate for NR Compounds (고무용(用) 국산(國産) 각종충전제(各種充塡劑)에 관(關)한 연구(硏究) (제1보(第1報)) 고무용(用) 국산(國産) 탄산(炭酸)칼슘의 성능(性能)에 관(關)하여)

  • Lee, Myung-Whan;An, Young-Pil
    • Elastomers and Composites
    • /
    • v.5 no.1
    • /
    • pp.69-74
    • /
    • 1970
  • The influence of various calcium carbonate on the physical properties of natural rubber have teen carries out extensive experiments on compounding. Final evaluation was made through various kinds of physical test-tensile strength, modulus, tear strength and hardnees-including particle size. The results are as follows: 1. Generally, tile tensile strength, modulus and tear strength showed the similar tendency in various calcium carbonate compounding. 2. The maximum volume of general using have been obtained with 150 phr calcium carbonate in $NR-CaCO_3$ compounding. 3. The particle size of domestic calcium carbonate showed $1.0\mu-2.6\mu$.

  • PDF

Physical Properties of Silicone Rubber/Clay Composites According to the Clay Type and Modification (Clay의 종류 및 표면처리가 silicone rubber/clay 복합체의 물성에 미치는 영향)

  • Yoon, Jin-San;Kim, Eung-Soo;Kim, Eun-Jeong;Lee, Tae-Hwa
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.260-268
    • /
    • 2009
  • Modification of clay surface was attempted by treating the clay with bis[(3-triethoxysilylpropyl)tetra sulfide (TSS) to raise the hydrophobicity and to induce a chemical reaction between the clay and the high temperature vulcanization-type silicone rubber matrix with purpose of improving the compatibility between the components, and thereby Na-$MMTS_4$ and Fe-$MMTS_4$ were synthesized by treating Na-MMT and Fe-MMT with TSS, respectively. Silicone rubber/clay composites were prepared by compounding the clays with silicone rubber. Thermal stability and mechanical properties were evaluated as a function of the clay types and the surface modification.

A Study on Graphene Oxide and Carboxylated Styrene-Butadiene Rubber(XSBR) Nanocomposites (그래핀 옥사이드/카르복실화한 스티렌-부타디엔 고무 나노 복합체에 관한 연구)

  • Jang, Sun Ho;Xu, Li Xiang;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.52-58
    • /
    • 2017
  • Graphene oxide (GO)/carboxylated styrene-butadiene rubber (XSBR) nanocomposites with various contents of GO were prepared by a latex compounding method. It has been confirmed that the functional groups of GO and the hydrogen bonds between GO and XSBR are existed. It can be seen that the scorch time ($t_{s2}$), which is the measurement of incipient vulcanization of rubber, showed a delay after the addition of GO. Field emission scanning electron microscopy was employed to confirm the uniform dispersion of filler in the matrix. Indeed, with increasing fillers loading, the torque, tensile strength, thermal stability and crosslink density of obtained nanocomposites were improved. These results were correlated to the better dispersion of fillers through the rubber matrix.

  • PDF

Studies on the Improvement of Quality for Soles and Heels of Shoes (군화창 및 구두창의 품질향상에 관한 연구)

  • Huh, Dong-Sub;Choi, Choon-Chuel;Kim, Chong-Suk
    • Elastomers and Composites
    • /
    • v.8 no.2
    • /
    • pp.148-152
    • /
    • 1973
  • A study of preparing rubber soles and heels was made to improve the quality in their physical properties such as resistance of cut-growth, abrasion resistance and tensile strength. Following results were obtained in the characteristics of rubber compounding: 1. In the reinforcement effect of fillers, it was found that hydrous silcate and carbon black were the best, aluminum and calcium silicate were pretty good, and basic magnesium carbonate was moderate. 2. SBR/BR blend in the ratio of from 85/25 to 100/0 and NBR/BR blend in the ratio of from 60/40 to 20/80 were the most suitable compounding condition.

  • PDF

Study on the Preparation of Alumina Powders used os a Rubber Filler with a Microwave Extraction System (마이크로파에 의한 고무용 충전제로서의 Alumina Powder의 제조에 관한 연구)

  • Park, Chan-Young;Hwang, Eun-Hee;Han, Seong-Kee
    • Elastomers and Composites
    • /
    • v.33 no.3
    • /
    • pp.201-209
    • /
    • 1998
  • Alumina powders used as a filler in rubber compounding was extracted from kaolin in $H_2SO_4$ solution employing conventional thermal and microwave energy resources. Maximum degrees of alumina extraction from kaolin were 72.8% at $80^{\circ}C$, 1M $H_2SO_4$, and 180min in the conventional thermal extraction process and were 99.0% at $90^{\circ}C$, 1M $H_2SO_4$,, and 60min in the microwave extraction one, respectively. The samples synthesized in both processes were analyzed by means of TG/DTA, XRD, SEM, Atomic Emission Spectroscopy, and BET method. Studies are presently under way to unravel the basic interaction mechanisms between microwave and alumina power for high rates of alumina extraction from kaolin in the microwave ex-traction process.

  • PDF

A Study on Magnetic Property Improvement of Rubber Magnets for Heat Loss Reduction of a Refrigerator

  • Ahn, WonSool;Lee, Haakil;Ha, Ji Soo
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.38-42
    • /
    • 2016
  • For improving the heat loss of a refrigerator around door gasket, it is very important to reduce the amount of rubber magnet used, of which thermal conductivity is much higher than the plastics, and enhancing the magnetic properties of rubber magnet itself is crucial for this. In the present study, therefore, a relationship between the optimum conditions of rubber magnet fabrication process and raw material compositions in the ferrite powder/CPE binder compounds was investigated for finding a way to enhance the magnetic properties of rubber magnet. Magnetic attraction forces of a sample rubber magnet was measured as function of distance, and thermal properties of the sample ferrite powder/CPE binder compound were analyzed with TG/DTA thermal analyzer. As a results, a rubber magnet strip with enhanced magnetic properties was expected to be fabricated, of which raw material compound was prepared by compounding with higher ferrite magnetic powder concentration.

Development and Properties of Rubber Sheet using Thermoplastic Elastomer (열가소성 고무를 사용한 RUBBER SHEET의 제조 및 물성)

  • Chun, Seung-Han;Han, Min-Hyeon;Mun, Il-Sik
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.122-127
    • /
    • 2003
  • Compounding, using such thermoplastic elastomer as styrene-ethylene-butadiene-styrene (SEBS) blended with polypropylene(PP), oil, and other ingredients, was studied to develop a new material with excellent impact resistance and resilience for the replacement of environmentally toxic PVC sheet. Hardness decreased linearly with oil content in the SEBS/oil blend, and the tensile strength increased with PP content whereas elongation showed no effects over 50 phr of PP in SEBS/oil/PP blend. In the practical SEBS composition, proposed to replace the PVC sheet material, tensile and tear strength, as well as hardness, increased proportionally with PP content, while melt index decreased.

No-binding Molding Technology Development for Waste Rubber Recycling

  • Zhang, Xiao Jie;Hong, Sung Woo;Kim, Jin Kuk
    • Elastomers and Composites
    • /
    • v.53 no.1
    • /
    • pp.19-25
    • /
    • 2018
  • In this study, a new process was developed to develop the waste rubber material recycling system. Firstly, the blending of the reclaimed rubber/virgin rubber as a compounding technology was investigated in this study. Secondly, the removal of odor by using zeolite. Thirdly, the continuous crosslinking process technology was studied the technology can solve the environmentally harmful substances and economic problems. Based on this technology, we have started to develop application technologies such as floor mats and rubber sheets for forklifts, and will further study the environmentally conscious products in various ways. Our research will contribute to the recycling industry.

FATIGUE LIFE PREDICTION OF RUBBER MATERIALS USING TEARING ENERGY

  • Kim, H.;Kim, H.Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.741-747
    • /
    • 2006
  • It has been almost impossible to predict the fatigue life in the field of rubber materials by numerical methods. One of the reasons is that there are no obvious fracture criteria and excessively various ways of mixing processes. Tearing energy is considered as a fracture criterion which can be applied to rubber compounds regardless of different types of fillers, relative to other fracture factors. Fatigue life of rubber materials can be approximately predicted based on the assumption that the latent defect caused by contaminants or voids in the matrix, imperfectly dispersed compounding ingredients, mold lubricants and surface flaws always exists. Numerical expression for the prediction of fatigue life was derived from the rate of rough cut growth region and the formulated tearing energy equation. Endurance test data for dumbbell specimens were compared with the predicted fatigue life for verification. Also, fatigue life of industrial rubber components was predicted.