Physical Properties of Silicone Rubber/Clay Composites According to the Clay Type and Modification

Clay의 종류 및 표면처리가 silicone rubber/clay 복합체의 물성에 미치는 영향

  • Yoon, Jin-San (Department of Polymer Science and Engineering, Inha University) ;
  • Kim, Eung-Soo (Department of Polymer Science and Engineering, Inha University) ;
  • Kim, Eun-Jeong (Department of Polymer Science and Engineering, Inha University) ;
  • Lee, Tae-Hwa (Department of Polymer Science and Engineering, Inha University)
  • 윤진산 (인하대학교 고분자공학과) ;
  • 김응수 (인하대학교 고분자공학과) ;
  • 김은정 (인하대학교 고분자공학과) ;
  • 이태화 (인하대학교 고분자공학과)
  • Published : 2009.09.30

Abstract

Modification of clay surface was attempted by treating the clay with bis[(3-triethoxysilylpropyl)tetra sulfide (TSS) to raise the hydrophobicity and to induce a chemical reaction between the clay and the high temperature vulcanization-type silicone rubber matrix with purpose of improving the compatibility between the components, and thereby Na-$MMTS_4$ and Fe-$MMTS_4$ were synthesized by treating Na-MMT and Fe-MMT with TSS, respectively. Silicone rubber/clay composites were prepared by compounding the clays with silicone rubber. Thermal stability and mechanical properties were evaluated as a function of the clay types and the surface modification.

Clay의 표면을 bis[(3-triethoxysilylpropyl)tetra sulfide (TSS)으로 처리하면 clay 표면의 소수성이 증가 될 뿐만 아니라 high temperature vulcanization 형 silicone rubber(HTV)와 화학적 반응이 가능하기 때문에 clay와 silicone rubber 사이의 상용성이 향상될 수 있을 것으로 예상되어 TSS를 이용하여 Na-MMT와 Fe-MMT의 silicate 층 표면에 tetra sulfide 그룹을 도입시킨 Na-$MMTS_4$와 Fe-$MMTS_4$를 각각 제작하였다. 이들 clay를 HTV silicone rubber와 compounding하여 silicone rubber/clay composites를 제작하였으며, clay의 종류 및 표면개질에 따른 silicone rubber 복합체의 열적안정성 및 기계적 물성을 평가하였다.

Keywords

References

  1. A. C. Balazs, C. Singh, and E. Zhulina, 'Modeling the interactions between polymers and clay surfaces through self-consistent field theory', Macromolecules, 31, 8370 (1998) https://doi.org/10.1021/ma980727w
  2. D. V. Kuznetsov and A. C. Balazs, 'Phase behavior of end-functionalized polymers confined between two surfaces', J. Chem. Phys., 113, 2479 (2000) https://doi.org/10.1063/1.482065
  3. E. P. Giannelis, 'Polymer layered silicate nanocomposites', Adv. Mater., 8, 29 (1996) https://doi.org/10.1002/adma.19960080104
  4. M. Okamoto, 'Recent advances in polymer/layered silicate nanocomposites: an overview from science to technology', Mater. Sci. Tech. Lond., 22, 756 (2006) https://doi.org/10.1179/174328406X101319
  5. S. S. Ray and M. Okamoto, 'Polymer/layered silicate nanocomposites: a review from preparation to processing', Prog. Polym. Sci., 28, 1539 (2003) https://doi.org/10.1016/j.progpolymsci.2003.08.002
  6. S.D. Burnside and E.P. Giannelis, 'Synthesis and properties of new poly(dimethylsiloxane) nanocomposites', Chem. Mater., 7, 1597 (1995) https://doi.org/10.1021/cm00057a001
  7. P.B. Messersmith and E.P. Giannelis, 'Synthesis and barrier properties of poly(-caprolactone)-layered silicate nanocomposites', J. Polym. Sci. Part A: Polym. Chem., 33, 1047 (1995) https://doi.org/10.1002/pola.1995.080330707
  8. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, 'Synthesis of nylon 6-clay hybrid' J. Mater. Res., 8, 1179 (1993) https://doi.org/10.1557/JMR.1993.1179
  9. K. Yano, A. Usuki, T. Kurauchi, and O. Kamigaito, 'Synthesis and properties of polyimide-clay hybrid', J. Polym. Sci. Part A: Polym. Chem., 31, 2493 (1993) https://doi.org/10.1002/pola.1993.080311009
  10. P.B. Messersmith and E.P. Giannelis, 'Synthesis and characterization of layered silicate-epoxy nanocomposites', Chem. Mater., 6, 1719 (1994) https://doi.org/10.1021/cm00046a026
  11. Y. Wang, L. Zhang, C. Tang, and D. Yu, 'Preparation and characterization of rubber-clay nanocomposites', J. Appl. Polym. Sci., 78, 1879 (2000) https://doi.org/10.1002/1097-4628(20001209)78:11<1879::AID-APP50>3.0.CO;2-1
  12. R. A. Vaia, H. Ishii, and E. P. Giannelis, 'Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates' Chem. Mater., 5, 1694 (1993) https://doi.org/10.1021/cm00036a004
  13. M. Pramanik, S. K. Srivastava, B. K. Samantaray, and A. K. Bhowmick, 'Rubber-clay nanocomposite by solution blending', J. Appl. Polym. Sci., 87, 2216 (2003) https://doi.org/10.1002/app.11475
  14. L. Song and Y. Hu, 'Study on the solvothermal preparation of polyethylene/organophilic montmorillonite nanocomposites', J. Mater. Chem., 12, 3152 (2002) https://doi.org/10.1039/b201488b
  15. M. L. Q. A. Kaneko and I. V. P. Yoshida, 'Effect of natural and organically modified montmorillonite clays on the properties of polydimethylsiloxane rubber', J. Appl. Polym. Sci., 108, 2587 (2008) https://doi.org/10.1002/app.27898
  16. L. Bokobza, 'Elastomeric composites. I. silicone composites', J. Appl. Polym. Sci., 93, 2095 (2004) https://doi.org/10.1002/app.20684
  17. S. Ray and A. K Bhowmick, 'Synthesis, characterization and properties of montmorillonite clay-polyacrylate hybrid material and its effect on the properties of engage-clay hybrid composite', Rubber. Chem. Technol., 74, 835 (2001) https://doi.org/10.5254/1.3547656
  18. J. Wang, Y. Chen, and Q. Jin, 'Organic montmorillonite as a substitute for aerosilica in addition-type liquid silicone rubber systems', Macromol. Chem. Phys., 206, 2512 (2005) https://doi.org/10.1002/macp.200500386
  19. S. Joly, G. Garnaud, R. Ollitrault, L. Bokobza, and J. E. Mark, 'Organically modified layered silicates as reinforcing fillers for natural rubber', Chem. Mater., 14, 4202 (2002) https://doi.org/10.1021/cm020093e
  20. A. Usuki, A. Tukigase, and M. Kato, 'Preparation and properties of EPDM–clay hybrids', Polymer, 43, 2185 (2002) https://doi.org/10.1016/S0032-3861(02)00013-7
  21. M. Kato, A. Tsukigase, H. Tanaka, A. Usuki, and I. Inai, 'Preparation and properties of isobutylene-isoprene rubber-clay nanocomposites', J. Polym. Sci. Part A: Polym. Chem., 44, 1182 (2006) https://doi.org/10.1002/pola.21233
  22. J. Brandrup and E. H. Immergut, eds., Polymer Handbook, 3rd ed., Wiley, New York, sec. VII, 176, (1989)
  23. G. X. Chen, J. B. Choi, and J. S. Yoon, 'The role of functional group on the exfoliation of clay in poly(L-lactide)', Macromol. Rapid. Commun., 26, 183 (2005) https://doi.org/10.1002/marc.200400452
  24. T. J. Pinnavaia, G. W. Beall, Polymer-clay nanocomposites, Wiley: NY, US, (2000)
  25. B. K. G. Theng, Chemistry of Clay-Organic Reactions, Wiley, NY, US, (1974)
  26. G. L. Wikes and J. Wen, 'Organic/inorganic hybrid network materials by the sol−gel approach', Chem. Mater., 8, 1667 (1996) https://doi.org/10.1021/cm9601143
  27. T. Y. Tsai, S. T. Lu, C. J. Huang, and J. X. Liu, 'The structure-property relationship of novolac cured epoxy resin/clay nanocomposites', J. Polym. Eng. Sci., 48, 467 (2008) https://doi.org/10.1002/pen.20977
  28. E. S. Kim, E. J. Kim, J. H. Shim, and J. S. Yoon, 'Thermal stability and ablation properties of silicone rubber composites', J. Appl. Polym. Sci., 110, 1263 (2008) https://doi.org/10.1002/app.28633
  29. Y. Zhang, Y. Hu, L. Song, J. Wu, and S. Fang, 'Influence of Fe-MMT on the fire retarding behavior and mechanical property of (ethylene-vinyl acetate copolymer/magnesium hydroxide) composite', Polym. Adv. Technol., 19, 960 (2008) https://doi.org/10.1002/pat.1059
  30. N. N. Herrera, J. M. Letoffe, J.L. Putaux, L. David, and E. B. Lami, 'Aqueous dispersions of silane-functionalized laponite clay platelets. a first step toward the elaboration of water-based polymer/clay nanocomposites', langmuir, 20, 1564 (2004) https://doi.org/10.1021/la0349267