• Title/Summary/Keyword: rubber bushing

Search Result 30, Processing Time 0.044 seconds

Consideration of Frequency Dependent Complex Stiffness of Rubber Busings in Transmission Force Analysis of a Vehicle Suspension System (고무 부싱의 주파수 의존 복소 강성을 고려한 차량 현가 장치에서의 전달력 분석)

  • 이준화;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.34-39
    • /
    • 1998
  • In order to compute the forces which are transmitted through rubber bushings with a commercial multibody dynamic analysis (MBDA) program, a rubber bushing model is needed. The rubber bushing model of MBDA programs such as DADS or ADAMS is the Voigt model which is simply a parallel spring-viscous damper system, meaning that the damping force of the Voigt model is proportional to the frequency. However, experiments do not necessarily support this proportionality. Alternatively, the viscoelastic characteristics of rubber bushings can be better represented by the complex stiffness. The purpose of this paper is to develop a viscoelastic rubber bushing model for the MBDA programs. Firstly, a methodology is proposed to calculate the complex stiffness of rubber bushings considering static and dynamic load conditions. Secondly, a viscoelastic rubber bushing model developed which uses standard elements provided by DADS. The proposed methods are applied to the rubber bushings of the lower control arms of a rear suspension of a 1994 Ford Taurus model. Then, the forces computed for the rubber bushing model are analyzed and compared with the Voigt model in time and frequency domains.

  • PDF

Equivalent Stiffness Analysis of Rubber Bushing Considering Large Deformation and Size Effect (부싱의 대변형거동과 크기를 고려한 등가 강성 해석)

  • Lee, Hyun Seong;Sung, Myung Kyun;Kim, Heung Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.271-277
    • /
    • 2017
  • In this paper, the amplitude and frequency dependent dynamic characteristics of the equivalent stiffness of a rubber bushing are investigated. A new mathematical model is proposed to explain the large deformation and size effect of a rubber bushing. The proposed model consists of elastic, viscous, and frictional stress components and the equivalent strain. The proposed model is verified using experimental results. The comparison shows that the proposed model can accurately predict the equivalent stiffness values of a rubber bushing under various magnitudes and frequencies. The developed model could be used to predict the dynamic equivalent stiffness of a rubber bushing in automotive engineering.

Development of Polymer Bushing for Overhead Line Switch (가공개폐기용 폴리머 부싱 개발)

  • 최경선;주종민;이철호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.787-790
    • /
    • 2001
  • Polymer bushing used for overhead line switch was designed and investigated. Requirements of electrical ratings such as partial discharge, ac withstand voltage, impulse voltage and material properties were proposed in accordance with IEEE 386 and pre-standard (PS) 151-146∼147, 170∼180 of KEPCO. The polymer bushing consists of an internal epoxy bushing and external housing made of EPDM rubber. The rubber housing was molded with mold cone. Therefore, the polymer bushing offers several advantages like light weight, good sealing properties, easy installation and excellent performance in contamination. Electric field analysis was also introduced in order to verify the reliability of the design.

  • PDF

자동차 현가장치용 Rubber Bushing 부품의 신뢰성 향상

  • Jeong, Won;Gwon, Yeong-Ho;Yun, Sin-Il;Jo, Hyeon-Jong
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.362-370
    • /
    • 2006
  • 차량의 충격과 진동을 완화하고 링크의 조정역할을 하는 Rubber Bushing제품의 내구성이 약하게 되면 Control arm에서의 이탈사고나 차량의 떨림, 소음으로 인한 고객 불만이 발생하게 된다. 따라서, 국내외 시장에서의 경쟁력 향상을 위해 Rubber Bushing에 대한 내구성, 정특성, 동특성의 개선을 위한 기술의 개발이 요구되고 있다. 본 연구의 목적은 Rubber Bushing을 개발하는데 있어서 종전의 재료설계, 형상설계 및 공정설계에 대한 분석을 행하고, 실험계획법(DOE)을 활용하여 가장 적은 샘플의 시험으로 최적의 설계요소를 찾아내는 방법을 연구하는데 있다. Bushing의 품질특성이 재료, 형상 및 공정에서 어떠한 조건을 가질 때 특성치가 가장 높은 바람직한 반응을 얻을 수 있는 가를 연구하여 최적반응 조건을 결정하고자 한다.

  • PDF

EXPERIMENTAL STUDY ON THE BUSHING CHARACTERISTICS UNDER SEVERAL EXCITATION INPUTS FOR BUSHING MODELING

  • Ok, J.K.;Yoo, W.S.;Sohn, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.455-465
    • /
    • 2007
  • The bushing element shows nonlinear characteristics in both displacements and frequencies, also with hysteretic responses for repeated vibrational excitations. Since the characteristics of the rubber bushing significantly affects the accuracy of the vehicle dynamic simulation result, it should be accurately modeled in the vehicle suspension model. To develop an accurate bushing model for vehicle dynamics analysis, the bushing characteristics under several excitation inputs must be known. In this paper, a 3-axis tester was used to capture the bushing characteristics. The random inputs, sine inputs, and step inputs were imposed on each axis of the bushing. Also, two-axis inputs, the radial-axial and radial-normal inputs, were simultaneously imposed on the tester. Three-axis inputs including the radial-axial-normal direction were supplied to the tester. Bushing characteristics of each case were precisely analyzed. These results could be available for dynamic modeling of bushing.

A Study on the Empirical Modeling of Rubber Bushing for Dynamic Analysis (동역학 해석을 위한 고무부싱의 실험적 모델링에 대한 연구)

  • Sohn, Jeong-Hyun;Baek, Woon-Kyung;Kim, Dong-Jo
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.121-130
    • /
    • 2004
  • A rubber bushing connects the components of the vehicle each other and reduce the vibration transmitted to the chassis frame. A rubber bushing has the nonlinear characteristics for both the amplitude and the frequency and represents the hysteretic responses under the periodic excitation. In this paper, one-axis durability test is performed to describe the mechanical behavior of typical vehicle elastomeric components. The results of the tests are used to develop m empirical bushing model with an artificial neural network. The back propagation algerian is used to obtain the weighting factor of the neural network. A numerical example is carried out to verify the developed bushing model and the vehicle simulation is performed to show the fidelity of proposed model.

Service Life Prediction of Rubber Bushing for Tracked Vehicles

  • Woo, Chang-Su;Kang, In-Sug;Lee, Kang-Suk
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.81-87
    • /
    • 2020
  • Service life prediction and evaluation of rubber components is the foundational technology necessary for securing the safety and reliability of the product and to ensure an optimum design. Even though the domestic industry has recognized the importance thereof, technology for a systematic design and analysis of the same has not yet been established. In order to develop this technology, identifying the fatigue damage parameters that affect service life is imperative. Most anti-vibration rubber components had been damaged by repeated load and aging. Hence, the evaluation of the fatigue characteristics is indispensable. Therefore, in this paper, we propose a method that can predict the service life of rubber components relatively accurately in a short period of time. This method works even in the initial designing stage. We followed the service life prediction procedure of the proposed rubber components. The weak part of the rubber and the maximum strain were analyzed using finite element analysis of the rubber bushing for the tracked vehicles. In order to predict the service life of the rubber components that were in storage for a certain period of time, the fatigue test was performed on the three-dimensional dumbbell specimen, based on the results obtained by the rubber material acceleration test. The service life formula of the rubber bushing for tracked vehicles was derived using both finite element analysis and the fatigue test. The service life of the rubber bushing for tracked vehicles was estimated to be about 1.7 million cycles at room temperature (initial stage) and about 400,000 cycles when kept in storage for 3 years. Through this paper, the service life for various rubber parts is expected be predicted and evaluated. This will contribute to improving the durability and reliability of rubber components.

Investigation of Vehicle Dynamic Behavior of Composite Bogie Under Different Rubber Bushing Stiffness Values (고무부싱의 강성에 따른 복합소재 대차의 동적거동 평가)

  • Kim, Il Kyeom;Kim, Jung Seok;Lee, Woo Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.303-309
    • /
    • 2015
  • In this study, a vehicle dynamic analysis and roller rig test were performed to evaluate the applicability of a suspensionless composite bogie to railway vehicles. A vehicle dynamic analysis was carried out under different rubber bushing stiffness values. The stiffness of the rubber bushing that plays a role in guiding wheel sets was varied in the range of 10-100 MN/m, in 10-MN/m steps. Based on the results, the composite bogie with a rubber bushing stiffness of more than 40 MN/m satisfied the design requirements. In addition, a rubber bushing with a stiffness of 81 MN/m was fabricated, and a roller rig test was performed. Based on the test results, the vehicle equipped with the composite bogie had a critical speed of 363 km/h, which agreed with the simulation result within an error of 10%.

Optimization of Neural Network Structure for the Efficient Bushing Model (효율적인 신경망 부싱모델을 위한 신경망 구성 최적화)

  • Lee, Seung-Kyu;Kim, Kwang-Suk;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.48-55
    • /
    • 2007
  • A bushing component of a vehicle suspension system is tested to capture the nonlinear behavior of rubber bushing element using the MTS 3-axes rubber test machine. The results of the tests are used to model the artificial neural network bushing model. The performances from the neural network model usually are dependent on the structure of the neural network. In this paper, maximum error, peak error, root mean square error, and error-to-signal ratio are employed to evaluate the performances of the neural network bushing model. A simple simulation is carried out to show the usefulness of the developed procedure.

Development of a New Bushing Model for Vehicle Suspension Module Design (승용차 현가모듈 설계를 위한 새로운 부싱모델 개발)

  • Ok, Jin-Kyu;Park, Dong-Woon;Yoo, Wan-Suk;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.143-150
    • /
    • 2006
  • In this paper, a new bushing model for vehicle dynamics analysis using Bouc-Wen hysteretic model is proposed. Bushing components of a vehicle suspension system are tested to capture the nonlinear behavior of rubber bushing elements using the MTS 3-axes rubber test machine. The results of the tests are used to define parameters in Bouc-Wen bushing model, which was employed to represent the hysteretic characteristics of the bushing. Bushing parameters are obtained by using genetic algorithms and sensitivity analysis of parameters are also carried out. ADAMS program was used for the identification process and VisualDOC program was employed to find the optimal parameters. A half-car simulation was carried out to show the usefulness of the developed bushing model.