DOI QR코드

DOI QR Code

Equivalent Stiffness Analysis of Rubber Bushing Considering Large Deformation and Size Effect

부싱의 대변형거동과 크기를 고려한 등가 강성 해석

  • 이현성 (동국대학교 기계공학과) ;
  • 승명균 (동국대학교 기계공학과) ;
  • 김흥수 (동국대학교 기계로봇에너지공학과)
  • Received : 2016.07.20
  • Accepted : 2017.01.14
  • Published : 2017.04.01

Abstract

In this paper, the amplitude and frequency dependent dynamic characteristics of the equivalent stiffness of a rubber bushing are investigated. A new mathematical model is proposed to explain the large deformation and size effect of a rubber bushing. The proposed model consists of elastic, viscous, and frictional stress components and the equivalent strain. The proposed model is verified using experimental results. The comparison shows that the proposed model can accurately predict the equivalent stiffness values of a rubber bushing under various magnitudes and frequencies. The developed model could be used to predict the dynamic equivalent stiffness of a rubber bushing in automotive engineering.

본 논문에서는 고무 부싱의 등가 강성이 가진 크기와 가진 주파수에 따라 달라지는 동특성에 대해 연구하였다. 새로운 모델은 고부 부싱의 대변형 거동과 크기 효과를 설명하기 위해 제안하였다. 제안된 제안된 모델은 탄성(Elastic) 요소, 점성(Viscous) 요소, 마찰(Friction) 요소로 이루어진 응력항과 등가변형률로 구성되어 있다. 제안된 모델은 실험 결과를 통해 검증하였다. 실험 검증을 통해 제안된 모델은 다양한 가진 크기와 가진 주파수에 따른 고무 부싱의 등가 강성을 정확히 예측함을 확인할 수 있다. 제안된 모델은 자동차 산업에서 고무 부싱의 동적 등가강성을 예측하는데 사용할 수 있을 것으로 예상한다.

Keywords

References

  1. Payne, A.R. and Whittaker, R.E., 1971, "Low Strain Dynamic Properties of Filled Rubbers," Rubber Chemistry and Technology, Vol. 44, pp. 440-478. https://doi.org/10.5254/1.3547375
  2. Olsson, A.K., 2007, "Finite Element Procedures in Modeling the Dynamic Properties of Rubber," Ph.D Dissertation of Lund University.
  3. Berg, M., 1998, "A Non-linear Rubber Spring Model for Rail Vehicle Dynamics Analysis," Vehicle System Dynamics, Vol. 30, pp.197-212. https://doi.org/10.1080/00423119808969447
  4. Sjoberg, M. and Kari, L., 2002, "Nonlinear Behavior of a Rubber Isolator System using Fractional Derivatives," Vehicle System Dynamics, Vol. 37, pp. 217-236. https://doi.org/10.1076/vesd.37.3.217.3532
  5. Garcia-Tarrago, M. J., Kari, L., Vinolas, J. and Gil- Negrete N., 2007, "Frequency and Amplitude Dependence of the Axial and Radial Stiffness of Carbon-black Filled Rubber Bushings," Polymer Testing, Vol. 26, pp. 629-638. https://doi.org/10.1016/j.polymertesting.2007.03.011
  6. Garcia-Tarrago, M. J., Kari, L. Vinolas, J. and Gil- Negrete, N., 2007, "Torsion Stiffness of a Rubber Bushing: a Simple Engineering Design Formula Including the Amplitude Dependence," Journal of Strain Analysis, Vol. 42, pp. 13-21. https://doi.org/10.1243/03093247JSA246
  7. Horton, J. M., 2000, "Stiffness of Rubber Bush Mountings Subjected to Radial Loading," Rubber Chemistry and Technology, Vol. 73, pp. 253-264. https://doi.org/10.5254/1.3547589
  8. Kim, I. K., Kim, J. S. and Lee, W. G., 2015, "Investigation of Vehicle Dynamic Behavior of Composite Bogie Under Different Rubber Bushing Stiffness Values," Trans. Korean Soc. Mech. Eng. A, Vol. 39, No. 3, pp. 303-309. https://doi.org/10.3795/KSME-A.2015.39.3.303
  9. Dzierzek, S., 2000, "Experiment-based Modeling of Cylindrical Rubber Bushings for the Simulation of Wheel Suspension Dynamic Behavior," SAE, No. 2000-01-0095.
  10. Zhang, L., Yu, Z. and Yu, Z., 2010, "Novel Empirical Model of Rubber Bushing in Automotive Suspension System," Proc. of ISMA2010 Including USD2010, pp. 4259-4274.
  11. A. D5992-96, 2011, "Standard Guide for Dynamic Testing of Vulcanized Rubber and Rubber-Like Materials Using Vibratory Methods," ASTM International.
  12. Mullins, L., 1969, "Softening of Rubber by Deformation," Rubber Chemistry and Technology, Vol. 42, pp. 339-362. https://doi.org/10.5254/1.3539210