• Title/Summary/Keyword: routing congestion

Search Result 151, Processing Time 0.025 seconds

Power/Clock Network-Aware Routing Congestion Estimation Methodology at Early Design Stage (설계 초기 단계에서 전력/클록 네트워크를 고려한 라우팅 밀집도 예측 방법론)

  • Ahn, Byung-Gyu;Chong, Jong-Wha
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • This paper proposes the methodology to estimate the routing congestion of modern IC quickly and accurately at the early stage of the design flow. The occurrence of over-congestion in the routing process causes routing failure which then takes unnecessary time to re-design the physical design from the beginning. The precise estimation of routing congestion at the early design stage leads to a successful physical design that minimizes over-congestion which in turn reduces the total design time cost. The proposed estimation method at the block-level floorplan stage measures accurate routing congestion by using the analyzed virtual interconnections of inter/intra blocks, synthesized virtual power/ground and clock networks.

Effective Estimation Method of Routing Congestion at Floorplan Stage for 3D ICs

  • Ahn, Byung-Gyu;Kim, Jae-Hwan;Li, Wenrui;Chong, Jong-Wha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.344-350
    • /
    • 2011
  • Higher integrated density in 3D ICs also brings the difficulties of routing, which can cause the routing failure or re-design from beginning. Hence, precise congestion estimation at the early physical design stage such as floorplan is beneficial to reduce the total design time cost. In this paper, an effective estimation method of routing congestion is proposed for 3D ICs at floorplan stage. This method uses synthesized virtual signal nets, power/ground network and clock network to achieve the estimation. During the synthesis, the TSV location is also under consideration. The experiments indicate that our proposed method had small difference with the estimation result got at the post-placement stage. Furthermore, the comparison of congestion maps obtained with our method and global router demonstrates that our estimation method is able to predict the congestion hot spots accurately.

CANCAR - Congestion-Avoidance Network Coding-Aware Routing for Wireless Mesh Networks

  • Pertovt, Erik;Alic, Kemal;Svigelj, Ales;Mohorcic, Mihael
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4205-4227
    • /
    • 2018
  • Network Coding (NC) is an approach recently investigated for increasing the network throughput and thus enhancing the performance of wireless mesh networks. The benefits of NC can further be improved when routing decisions are made with the awareness of coding capabilities and opportunities. Typically, the goal of such routing is to find and exploit routes with new coding opportunities and thus further increase the network throughput. As shown in this paper, in case of proactive routing the coding awareness along with the information of the measured traffic coding success can also be efficiently used to support the congestion avoidance and enable more encoded packets, thus indirectly further increasing the network throughput. To this end, a new proactive routing procedure called Congestion-Avoidance Network Coding-Aware Routing (CANCAR) is proposed. It detects the currently most highly-loaded node and prevents it from saturation by diverting some of the least coded traffic flows to alternative routes, thus achieving even higher coding gain by the remaining well-coded traffic flows on the node. The simulation results confirm that the proposed proactive routing procedure combined with the well-known COPE NC avoids network congestion and provides higher coding gains, thus achieving significantly higher throughput and enabling higher traffic loads both in a representative regular network topology as well as in two synthetically generated random network topologies.

Improved Global Placement Technique to Relieve Routing Congestion (배선 밀집도를 완화하기 위한 개선된 광역배치 기법)

  • Oh, Eun-Kyung;Hur, Sung-Woo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.4
    • /
    • pp.431-435
    • /
    • 2008
  • Since previous work CDP(Congestion Driven Placement) [1] considers all possible directions to move every cell in nets which contribute highly to routing congestion, it consumes CPU time a lot. In this paper, we propose a faster global placement technique, so called ICDGP(Improved Congestion Driven Global Placement) to relieve the routing congestion. ICDGP uses the force-directed method to determine the target locations of the cells in the nets in the congested spots, and considers only to move the target location for each cell. If moving multiple cells simultaneously is considered better than moving each cell one by one it moves multiple cells simultaneously. By experimental results, ICDGP produces less congested placement than CDP does. Particularly, the CPU time is reduced by 36% on average.

Transient Multipath routing protocol for low power and lossy networks

  • Lodhi, Muhammad Ali;Rehman, Abdul;Khan, Meer Muhammad;Asfand-e-yar, Muhammad;Hussain, Faisal Bashir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2002-2019
    • /
    • 2017
  • RPL routing protocol for low-power and lossy networks is an Internet Engineering Task Force (IETF) recommended IPv6 based protocol for routing over Low power Lossy Networks (LLNs). RPL is proposed for networks with characteristics like small packet size, low bandwidth, low data rate, lossy wireless links and low power. RPL is a proactive routing protocol that creates a Directed Acyclic Graph (DAG) of the network topology. RPL is increasingly used for Internet of Things (IoT) which comprises of heterogeneous networks and applications. RPL proposes a single path routing strategy. The forwarding technique of RPL does not support multiple paths between source and destination. Multipath routing is an important strategy used in both sensor and ad-hoc network for performance enhancement. Multipath routing is also used to achieve multi-fold objectives including higher reliability, increase in throughput, fault tolerance, congestion mitigation and hole avoidance. In this paper, M-RPL (Multi-path extension of RPL) is proposed, which aims to provide temporary multiple paths during congestion over a single routing path. Congestion is primarily detected using buffer size and packet delivery ratio at forwarding nodes. Congestion is mitigated by creating partially disjoint multiple paths and by avoiding forwarding of packets through the congested node. Detailed simulation analysis of M-RPL against RPL in both grid and random topologies shows that M-RPL successfully mitigates congestion and it enhances overall network throughput.

CAMR: Congestion-Aware Multi-Path Routing Protocol for Wireless Mesh Networks

  • Jang, Seowoo;Kang, Seok-Gu;Yoon, Sung-Guk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.411-419
    • /
    • 2017
  • The Wireless Mesh Network (WMN) is a multi-hop wireless network consisting of mesh routers and clients, where the mesh routers have minimal mobility and form the backbone. The WMN is primarily designed to access outer network to mesh clients through backhaul gateways. As traffic converges on the gateways, traffic hotspots are likely to form in the neighborhood of the gateways. In this paper, we propose Congestion Aware Multi-path Routing (CAMR) protocol to tackle this problem. Upon congestion, CAMR divides the clients under a mesh STA into two groups and returns a different path for each group. The CAMR protocol triggers multi-path routing in such a manner that the packet reordering problem is avoided. Through simulations, we show that CAMR improves the performance of the WMN in terms of throughput, delay and packet drop ratio.

DCAR: Dynamic Congestion Aware Routing Protocol in Mobile Ad Hoc Networks

  • Kim, Young-Duk;Lee, Sang-Heon;Lee, Dong-Ha
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.1 no.1
    • /
    • pp.8-13
    • /
    • 2006
  • In mobile ad hoc networks, most of on demand routing protocols such as DSR and AODV do not deal with traffic load during the route discovery procedure. To achieve load balancing in networks, many protocols have been proposed. However, existing load balancing schemes do not consider the remaining available buffer size of the interface queue, which still results in buffer overflows by congestion in a certain node which has the least available buffer size in the route. To solve this problem, we propose a load balancing protocol called Dynamic Congestion Aware Routing Protocol (DCAR) which monitors the remaining buffer length of all nodes in routes and excludes a certain congested node during the route discovery procedure. We also propose two buffer threshold values to select an optimal route selection metric between the traffic load and the minimum hop count. Through simulation study, we compare DCAR with other on demand routing protocols and show that the proposed protocol is more efficient when a network is heavily loaded.

  • PDF

Single-row Routing Algorithm with Between Node Congestion (간노드과잉을 고려한 단층 열 라우팅 알고리즘)

  • 이남일;이상조
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.603-609
    • /
    • 1987
  • In this paper, the single-row routing algorithm for munimizing the street congestion and reducing the between node congestion is deviced. To reduce the between node congestion, reference line crossing is defined and used. Reducing the number of total reference line crossing means reducing the total length which help reduce the power consumption of the integrated system and reducing the between node congestin which help reduce the wiring area. This algorithm has been implemented and tested with various example, then produced good results.

  • PDF

Link-Disjoint Embedding of Complete Binary Trees into 3D-Meshes using Dimension-Ordered Routing (순위차원라우팅을 사용한 완전 이진트리의 3차원 메쉬로의 링크 충돌 없는 임베딩)

  • Park, Sang-Myeong;Lee, Sang-Kyu;Moon, Bong-Hee
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.2
    • /
    • pp.169-176
    • /
    • 2000
  • This paper is considered with the problem of embedding complete binary trees into 3-dimensional meshes using dimension-ordered routing with primary concern of minimizing link congestion. The authors showed that a complete binary tree with $2^P-1$ nodes can be embedded into a 3-dimensional mesh with optimum size, $2^P$ nodes, if the link congestion is two[14], (More precisely, the link congestion of each dimension is two, two, and one if the dimension-ordered routing is used, and two, one, and one if the dimension-ordered routing is not imposed.) In this paper, we present a scheme to find an embedding of a complete binary tree into a 3-dimensional mesh of size no larger than 1.27 times the optimum with link congestion one while using dimension-ordered routing.

  • PDF

Routing Congestion Driven Placement (배선밀집도 드리븐 배치)

  • Oh Eun-Kyung;Hur Sung-Woo
    • The KIPS Transactions:PartA
    • /
    • v.13A no.1 s.98
    • /
    • pp.57-70
    • /
    • 2006
  • This paper describes a new effective algorithm to estimate routing congestion and to resolve highly congested regions for a given detailed placement. The major features of the proposed technique can be summarized as follows. Firstly, if there are congested regions due to some nets which pass through the regions it can determine which cells affect those congested spots seriously and moves some of them to resolve congestion effectively. Secondly, since the proposed technique uses the ripple movement technique to move cells it resolves congestion without sacrificing wire length. Thirdly, we use an efficient incremental data structure to trace the changes in congestion and wire length as cells move. Hence, selection of cells to move could be very accurate and fast in the course of iteration. Finally, although an MST net model is used to resolve congestion in this paper, proposed technique can be work with any net model. Particularly, if proposed technique can obtain routing information from a real router, congestion can be resolved more effectively. Experimental results show that the proposed technique can resolve congestion effectively and efficiently without sacrificing wire length.