• Title/Summary/Keyword: rotor system

Search Result 2,179, Processing Time 0.027 seconds

A Study on Multi-Physics Analysis of High-Resolution Winding Type Resolver and Rotary Transformer (고정밀 권선형 레졸버의 변압부 및 레졸버 연동해석 연구)

  • Shin, Young-Chul;Kim, Ki-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.146-152
    • /
    • 2016
  • This paper describes a multi-physics analysis of a high resolution winding type resolver and rotary transformer using FEM (Finite Element Method). The rotary transformer boosts the input voltage to a high voltage which can be input into the rotor windings of the resolver. Through multi-physics models of the transformer and resolver, the characteristics of the output signals for the resolver system with high resolution can be derived. Moreover, the circuit model of the interface part between the transformer and resolver should be considered, because of the calculation of the input current to the resolver. The winding type resolver is composed of 32x and 1x stator windings for high resolution. Then, the output signals of the stator windings, which make sinusoidal SIN and COS waves with a $90^{\circ}$ phase difference, are verified.

A Study of Stator Fault Detection for the Induction Motor Using Axial Magnetic Leakage Flux (축방향 누설자속 측정에 의한 유도전동기의 고정자 결함검출에 관한 연구)

  • Shin, Dae-Cheul;Kim, Young-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.131-137
    • /
    • 2005
  • The purpose of this paper is to evaluate the axial magnetic flux measurement could be used as a tool of the condition monitoring system for the induction motor and to develope the diagnostic algerian for the electric motors. The magnetic leakage flux signal is captured by the flux coil located at the end of motor without the disturbance of the operation. And the signal is analyzed both time and frequency bases to detect the failure of the motor. Specific signature can be described in time and frequency domain for each faults of the motor. The spectrum of the signal was found more useful for the monitoring purpose. The supply voltage imbalance and tin to turn failure of the stator winding could be detected by analysing the specific sidebands of the axial flux and sideband of the rotor bar pass frequency with the high resolution spectrum. The goal of this study verity that the axial flux measurement for the induction motor is a powerful tool for the diagnostic method and develope the algorithm to detect the fault.

Structural Integrity of Small Wind Turbine Composite Blade Using Structural Test and Finite Element Analysis (구조시험 및 유한요소해석을 통한 소형풍력발전용 복합재 블레이드의 구조 안전성 평가)

  • Jang, Yun-Jung;Lee, Jang-Ho;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1087-1094
    • /
    • 2012
  • This study deals with structural analysis and testing under loading conditions calculated by computational fluid dynamics for a small composite blade that is utilized in a dual rotor wind turbine system. First, the aerodynamic forces were analyzed at the rated and cutout wind speed to identify the bending moment distribution along the blade length in previous research. Then, full-scale structural tests were conducted according to IEC 61400-2 to evaluate the structural integrity of the composite blade. These results were compared with finite element analysis to identify the accuracy of the structural analysis. Based on these results, it was revealed that the existing blade has a very high safety margin. Then, the layup of the composite blade was redesigned and analyzed using finite element analysis to achieve structural integrity and economic efficiency.

Analysis of Dynamic Characteristics of Water Injection Pump (물 분사 펌프의 동특성 분석)

  • Lee, Jong Myeong;Lee, Jeong Hoon;Ha, Jeong Min;Ahn, Byung Hyun;Kim, Won Cheol;Choi, Byeong Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1483-1487
    • /
    • 2013
  • Water injection pump outputs oil with high pressure during this process, seawater is injected into the well to recover the well pressure and maintain high productivity. A water injection pump has high productivity, and therefore, it serves as a key piece of equipment in marine plants. In this light, water injection pumps are being studied widely in industry. In this study, the rotor dynamics is analyzed to determine the natural frequency according to the bearing stiffness and operation speed change. This study aims to establish the pump reliability through critical speed, stability, and unbalance response analysis.

Fault Modeling and Diagnosis using Wavelet Decomposition in Squirrel-Cage Induction Motor Under Mixed Fault Condition (복합고장을 가지는 농형유도전동기의 모델링과 웨이블릿 분해를 이용한 고장진단)

  • Kim, Youn-Tae;Bae, Hyeon;Park, Jin-Su;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.691-697
    • /
    • 2006
  • Induction motors are critical components in industrial process. So there are many research in the condition based maintenance, online monitoring system, and fault detection. This paper presents a scheme on the detection and diagnosis of the three-phase squirrel induction motor under unbalanced voltage, broken rotor bar, and a combination of these two faults. Actually one fault happen in operation, it influence other component in motor or cause another faults. Accordingly it is useful to diagnose and detect a combination fault in induction motor as well as each fault. The proposed fault detection and diagnosis algorithm is based on the stator currents from the squirrel induction motor and simulated with the aid of Matlab Simulink.

Development of Gas Turbine Engine Simulation Program Based on CFD (CFD 기반 가스터빈 엔진 모사 코드 개발)

  • Jin, Sang-Wook;Kim, Kui-Soon;Choi, Jeong-Yeol;Ahn, Iee-Ki;Yang, Soo-Seok;Kim, Jae-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.42-53
    • /
    • 2009
  • Gas turbine engine simulation program has been developed. In compressor and turbine, 2-D NS implicit code is used with k-$\omega$ SST turbulent model. In combustor, 0-D lumped method chemical equilibrium code is adopted under the limitations, the products are only 10 species of molecular and air-fuel is perfectly mixed state with 100% combustion efficiency at constant pressure. Fluid properties are shared on interfaces between engine components. The outlet conditions of compressor have been used as the inlet condition of combustor. The inlet condition of turbine comes from the compressor The back pressure in compressor outlet is transferred by the inlet pressure of turbine. Unsteady phenomena at rotor-stator in compressor and turbine is covered by mixing-plane method. The state of engine can be determined only by given inlet condition of compressor, outlet condition of turbine, equivalence ratio and rotating speed.

Validation of Power Coefficient and Wake Analysis of Scaled Wind Turbine using Commercial CFD Program (상용 CFD 프로그램을 이용한 풍력터빈 축소모델 출력계수 검증 및 후류 해석)

  • Kim, Byoungsu;Paek, Insu;Yoo, Neungsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • A numerical simulation on the wake flow of a wind turbine which is a scaled version of a multi-megawatt wind turbine has been performed. Two different inlet conditions of averaged wind speed including one below and one above the rated wind speed were used in the simulation. Steady-state pitch angles of the blade associated with the two averaged wind speeds were imposed for the simulation. The steady state analysis based on the Reynolds averaged Navier-Stokes equations with the method of frame motion were used for the simulation to find the torque of the rotor and the wake field behind the wind turbine. The simulation results were compared with the results obtained from the wind tunnel testing. From comparisons, it was found that the simulation results on the turbine power are pretty close to the experimental values. Also, the wake results were relatively close to the experimental results but there existed some discrepancy in the shape of velocity deficit. The reason for the discrepancy is considered due to the steady state solution with the frame motion method used in the simulation. However, the method is considered useful for solutions with much reduced calculation time and reasonably good accuracy compared to the transient analysis.

Measurement of outgassing rates of Kevlar and S-Glass materials used in torque tubes of High Tc Superconducting (HTS) Motors

  • Thadela, S.;Muralidhar, BVAS;Kalyani, B;Choudhury, UK;Yadav, SN;Rao, V.V.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.11-15
    • /
    • 2018
  • Torque tubes in High Temperature Superconducting (HTS) motor transfer torque from superconducting field winding rotor to the room temperature shaft. It should have minimum heat conduction property for minimizing the load on cryo-refrigerator. Generally, these torque tubes are made with stainless steel material because of high strength, very low outgassing and low thermal contraction properties at cryogenic temperatures and vacuum conditions. With recent developments in composite materials, these torque tubes could be made of composites such as Kevlar and S-Glass, which have the required properties like high strength and low thermal conductivity at cryogenic temperatures, but with a reduced weight. Development and testing of torque tubes made of these composites for HTS motor are taken up at Bharat Heavy Electricals Limited (BHEL), Hyderabad in collaboration with Central Institute of Plastics and Engineering Technology (CIPET), Chennai and Indian Institute of Technology (IIT), Kharagpur. As these materials are subjected to vacuum, it is important to measure their outgassing rates under vacuum conditions before manufacturing prototype torque tubes. The present study focusses on the outgassing characteristics of Kevlar and S-Glass, using an Outgassing Measurement System (OMS), developed at IIT Kharagpur. The OMS facility works under vacuum environment, in which the test samples are exposed to vacuum conditions over a sufficient period of time. The outgassing measurements for the composite samples were obtained using pressure-rise technique. These studies are useful to quantify the outgassing rate of composite materials under vacuum conditions and to suggest them for manufacturing composite torque tubes used in HTS motors.

The Performance Analysis of the Parameter Extracting Technique for the Vibration Monitoring System in High Voltage Motor (고압전동기용 진동 감시 시스템의 계수 추출기법 성능 분석)

  • Park, Jung-Cheul;Lee, Dal-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.529-536
    • /
    • 2019
  • In this paper, the signals of the sensor for extracting characteristic parameters of the rotor are collected and the performance of the extraction technique is analyzed. To this end, a vibration test league was developed for conducting model tests to analyze the signal characteristics under normal operation. As a result, it is judged that no change in the measured the raw data amplitude will occur in the acceleration sensor with the unbalanced mass measured from the acceleration sensor. Performing FFT showed a significant increase in amplitude of the rotational frequency of 20 Hz as the unbalanced mass increased. The analysis results according to the change in the unequal mass of the speed sensor also showed a significant increase in the 1X Harmonics component, such as the acceleration sensor. There was no change in the amplitude of the acceleration sensor data when the misalignment occurred, and for the Envelope data, the amplitude of 2X (40 Hz) was increased depending on the degree of misalignment. The velocity sensor at change of misalignment also showed similar results to the acceleration sensor, and the peak was reduced at 600 Hz as the load increased in the frequency spectrum.

Computational Analysis of an Inverted-type Cross-flow Turbine for Ultra-low head Conditions (전산유체역학을 이용한 초저낙차 상황에서의 도립형 횡류수차의 해석 및 설계 최적화)

  • Ham, Sangwoo;Ha, Hojin;Lee, Jeong Wan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.76-86
    • /
    • 2019
  • The cross-flow turbine is a key hydraulic power system that is widely due to low costs, high efficiency, and low maintenance. In particular, the cross-flow turbine considered as the most suitable turbine for low head situations as it is known to operate down to 5 m of water head. However, the conventional cross-flow turbine is unsuitable for ultra-low head situations with less than a 3 m water head. In this study, we propose an inverted-type cross-flow turbine to overcome the limitations of conventional cross-flow turbines under ultra-low head situations. First, we described the limitations of conventional turbines and suggested a new turbine for the ultra-low head circumstances. Second, we investigated the performance of the new turbine using CFD analysis. Results demonstrated the effects of the design parameters, such as number of blades and rotor diameter ratio, on the performance of the suggested turbine. As a result, we developed an inverted-type cross-flow turbine with up to 60% efficiency under low water head conditions.