• Title/Summary/Keyword: rotor slot

Search Result 155, Processing Time 0.026 seconds

Reducing the Cogging toque of IPM type BLDC Motor according to the Flux barrier shape (IPM type BLDC 전동기의 자속장벽 설치에 따른 코깅 토크 저감)

  • Yang, Byoung-Yull;Yun, Keun-Young;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.67-69
    • /
    • 2004
  • This paper describes an approach to design a interior permanent magnet motor(IPM motor) for the reduction of cogging torque. The magnitude of the torque ripple and cogging torque in a interior permanent magnet motor(IPM motor) are generally dependent on several major factors: the shape of stator tooth tip, slot opening width, air gap length, the shape of barrier preventing flux leakage of magnets, magnet configuration and magnetization distribution or magnet poles. In this paper, the IPM BLDC motor is designed considering a saturated leakag flux between the barriers on the rotor for increasing the efficiency and decreasing the magnitude of the cogging torque. Analytical model is developed for the IPM BLDC motor with a concentrated winding stator. The results verifies that the proposed design approach is very efficient and effective in reducing the cogging torque and the torque ripple of the IPM BLDC motor to be used in an electric vehicle.

  • PDF

The Characteristic Analysis of Overhang Effect on Axial Flux Synchronous Motor (축방향 자속형 동기전동기의 오버행 효과에 따른 특성해석)

  • Lee, Byung-Jun;Won, Jin-Kook;Son, Dong-Hyeok;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.80-82
    • /
    • 2007
  • This paper presents the overhang effects of a novel axial flux permanent magnet (AFPM) machine, which consist of the segmented stator and fractioned slot windings, with one rotor and double stator. In addition, the overhang effect of permanent magnet of the motor has been analyzed quantitatively. The overhang is used to enhance the force density in permanent magnet machine. According to the variation of overhang length, the flux density distribution and torque are quantitatively compared. For these analysis, three dimensional finite element method (3D FEM) has been used in this paper. From the results, the proper overhang length of PM is selected to improve the performance of the AFPM machine.

  • PDF

Development of Shorted-Turn Sensor for Generator Rotor (발전기 계자의 층간단락 감지기 개발)

  • Lee, Young-Jun;Kim, Hee-Dong;Ju, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1765-1767
    • /
    • 2001
  • The shorted-turn sensor for generator's field winding has been developed. The sensor, installed in the generator air-gap, senses the slot leakage flux of field winding and produces a voltage waveform proportional to the rate of change of the flux. For identification of reliability for sensor, a shorted-turn test was performed at the Seoinchon combined cycle power plant on gas turbine generator. This sensor will be used as a detecting of shorted-turn for generator's field winding.

  • PDF

The Calculation Method of Leakage Inductances in Electrical Machines Using F.E.M. (유한요소법을 이용한 전기기기의 누설인덕턴스 계산)

  • Kim, Hyung-Seok;Choi, Myoung-Jun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.18-20
    • /
    • 1995
  • In this paper we presented a calculation method of leakage inductance in electrical machines. For its accurate calculation the finite element method is applied to the analysis of magnetic field distribution. The self and mutual inductances are derived using the results of the magnetic field analysis and the leakage inductance is easily obtained from these inductances. As numerical examples, we tread a single phase transformer and a rotor slot model of induction motor. In the finite element analysis we used the 2D linear magnetostatic formulation with the first-order triangular element.

  • PDF

Analytical Analysis of Cogging Torque in Motors of Permanent MagneticType (영구자석을 사용한 모터의 코깅토크에 관한 이론적 해석)

  • Go, Hong-Seok;Kim, Gwang-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1795-1800
    • /
    • 2000
  • One of the principal sources of vibration and noise in permanent magnetic machines is cogging torque, which is induced by interaction between the rotor poles and the stator teeth. For its analysis, using finite element analysis is very time consuming and the calculation of performance factors is extremely sensitive to the discretization. Especially, Maxwell stress tensor method is sensitive to the location of integral path. In this paper, a cogging permeance fuction is defined and replaced by the straight line. And it is assumed that the flux density acting on the stator's tooth side is the euqal to the flux density of the slot area. Using this definition and assumption, analytical calculation of cogging torque is presented and validated. And several reduction method is introduced.

Computations of Losses and Temperatures in the Core Ends of a High Voltage Turbo-generator

  • Liu Yujing;Hjarne Stig
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.299-305
    • /
    • 2005
  • The work described in this paper is to investigate the additional iron losses and consequent temperatures in core ends of a turbo-generator wound with high voltage cables. Electromagnetic calculations are made with 3D FE models, which include the lamination material with anisotropic properties both in magnetic permeability and electric conductivity. The models also include the geometry of the stator teeth and eventually the axial steps designated to reduce the core end losses. The 3D model of the rotor consists of field windings with straight in-slot parts and end windings. The thermal models are simplified into two dimensions and include the heat sources dumped from the 3D electromagnetic solutions. The influences of power factor on additional iron losses are studied for this cable wound machine and conventional machines. The calculation results show that the additional iron losses can be reduced to about $15\%$ by introducing some small steps around the airgap corner of core ends.

THE DEVELOPMENT OF FAN COIL UNIT MOTOR WITH PLASTIC FRAME (합성수지 프레임을 이용한 휀코일 유니트 모터 개발)

  • Lee, Sun-Hwi
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.61-66
    • /
    • 1987
  • The metals has been used to the electric motor frame and brackets. The purpose of this project is to substitute engineering plastic doter frame for metal because of the demand for small size and environmental reliability. As a result of considering of mechanical strength, heat and injection characteristic of engineering plastics. PBT GF 30 has been selected as the material of electric motor frame including brackets. Design of the frame has been carried out on enough consideration of mechanical strength, heat-resisting and endurance. For the prevention of lower efficiency, the length of airgap between stator and rotor is reduced and for the reduction of vibration, slot combination is changed and the length of stator is increased.

  • PDF

The Design and Analysis of a Permanent Magnet Reluctance Motor with High Efficiency (고효율 영구자석 릴럭턴스 전동기의 설계 및 해석)

  • Zhang, Peng;Kwon, Soon-O;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.775-776
    • /
    • 2006
  • Based on the requirement of high power and efficiency in automobile systems, this paper describes an investigation for the optimum design of a permanent magnet reluctance motor(PRM), and then the characteristics of this kind of motor is compared with that of a interior permanent magnet(IPM) motor. The IPM of 4-pole with 6-slot is redesigned into a PRM, which has the same stator and different rotor structure with IPM. Through finite element analysis(FEA) and equivalent circuit method, the PRM has higher salient ratio, higher efficiency at high speed, and lower iron loss compared with IPM.

  • PDF

Permanent Magnet Motor Design for Turrets with Large Diameters

  • Lee, Ji-Young;Joo, Dae-Suk;Hong, Do-Kwan;Chung, Shi-Uk;Woo, Byung-Chul;Koo, Dae-Hyun
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.460-465
    • /
    • 2013
  • This paper deals with an approach for the initial design of a permanent magnet motor for turrets with large diameters. The proposed design techniques are introduced as three stages. The first is the selection of a pole-slot combination, the second is the selection of the rotor topology, and the last is choosing the outermost dimensions. In every stage, a useful technique is described with considerations for effective fabrication and motor performance, and magnetic field computation is performed using the finite element method.

Analysis of Cogging Torque and Characteristics in Brushless DC Motor (브러시레스 전동기의 코깅토크 해석 및 특성해석)

  • Lee, Ji-Young;Lim, Yang-Soo;Hong, Jung-Pyo;Kim, Gyu-Tak;Sin, Sang-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.629-631
    • /
    • 2000
  • This paper deals with the design of a inner rotor type Brushless DC (BLDC) motor for Electric Power Steering to reduce the cogging torque. The effect of the design parameters on the characteristic and cogging torque is analyzed by Finite Element Method (FEM). The considered design parameters are as follows : the number of pole and slot. dead-zone and skew angle. and teeth shape. The winding resistance of each motor is calculated and the characteristic curve is derived from considering reactance drop voltage for original model.

  • PDF