• Title/Summary/Keyword: rotational inertia

Search Result 123, Processing Time 0.022 seconds

Deep Reinforcement Learning of Ball Throwing Robot's Policy Prediction (공 던지기 로봇의 정책 예측 심층 강화학습)

  • Kang, Yeong-Gyun;Lee, Cheol-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.398-403
    • /
    • 2020
  • Robot's throwing control is difficult to accurately calculate because of air resistance and rotational inertia, etc. This complexity can be solved by using machine learning. Reinforcement learning using reward function puts limit on adapting to new environment for robots. Therefore, this paper applied deep reinforcement learning using neural network without reward function. Throwing is evaluated as a success or failure. AI network learns by taking the target position and control policy as input and yielding the evaluation as output. Then, the task is carried out by predicting the success probability according to the target location and control policy and searching the policy with the highest probability. Repeating this task can result in performance improvements as data accumulates. And this model can even predict tasks that were not previously attempted which means it is an universally applicable learning model for any new environment. According to the data results from 520 experiments, this learning model guarantees 75% success rate.

On the dynamics of rotating, tapered, visco-elastic beams with a heavy tip mass

  • Zeren, Serkan;Gurgoze, Metin
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.69-93
    • /
    • 2013
  • The present study deals with the dynamics of the flapwise (out-of-plane) vibrations of a rotating, internally damped (Kelvin-Voigt model) tapered Bernoulli-Euler beam carrying a heavy tip mass. The centroid of the tip mass is offset from the free end of the beam and is located along its extended axis. The equation of motion and the corresponding boundary conditions are derived via the Hamilton's Principle, leading to a differential eigenvalue problem. Afterwards, this eigenvalue problem is solved by using Frobenius Method of solution in power series. The resulting characteristic equation is then solved numerically. The numerical results are tabulated for a variety of nondimensional rotational speed, tip mass, tip mass offset, mass moment of inertia, internal damping parameter, hub radius and taper ratio. These are compared with the results of a conventional finite element modeling as well, and excellent agreement is obtained.

DEVELOPMENT OF A NEW MISFIRE DETECTION SYSTEM USING NEURAL NETWORK

  • Lee, M.;Yoon, M.;SunWoo, M.;Park, S.;Lee, K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.637-644
    • /
    • 2006
  • The detection of engine misfire events is one of major concerns in engine control due to its negative effect on air pollution and engine performance. In this paper, a misfire detection system based on crankshaft angular speed fluctuation is developed. Synthetic variable method is adopted for the preprocessing of crankshaft angular speed. This method successfully estimates the work output of each cylinder by finding the effect of combustion energy on the crankshaft rotational speed or acceleration after virtually removing the effect of the internal inertia forces from the measured crankshaft speed signals. The detection system is developed using neural network with the revised synthetic angular acceleration as input which is derived from the preprocessing. Mathematical simulation is carried out for developing and verifying the misfire detection system. Finally, the reliability of the developed system is validated through an experiment.

Timoshenko theory effect on the vibration of axially functionally graded cantilever beams carrying concentrated masses

  • Rossit, Carlos A.;Bambill, Diana V.;Gilardi, Gonzalo J.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.703-711
    • /
    • 2018
  • In this paper is studied the effect of considering the theory of Timoshenko in the vibration of AFG beams that support ground masses. As it is known, Timoshenko theory takes into account the shear deformation and the rotational inertia, provides more accurate results in the general study of beams and is mandatory in the case of high frequencies or non-slender beams. The Rayleigh-Ritz Method is employed to obtain approximated solutions of the problem. The accuracy of the procedure is verified through results available in the literature that can be represented by the model under study. The incidence of the Timoshenko theory is analyzed for different cases of beam slenderness, variation of its cross section and compositions of its constituent material, as well as different amounts and positions of the attached masses.

Flapwise Bending Vibration of Rotating Cantilever Beams (회전 외팔보의 면외방향 굽힘진동 해석)

  • 유홍희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.348-353
    • /
    • 1995
  • When cantilever beams rotate, their bending stiffnesses change due to the stretching caused by centrifugal inertia forces. Such phenomena result in variations of natural frequencies and mode shapes associated with constant speed rotational motions of the beams. These variations are important in many practical applications such as helicopter blades, turbomachines, and space structures. This paper presents the formulation of a set of linear equations governing the flapwise bending vibration of rotating cantilever beams. These equations can be used to provide accurate predictions of the variations of natural frequencies and mode shapes due to rotation.

Vibration mitigation of composite laminated satellite solar panels using distributed piezoelectric patches

  • Foda, M.A.;Alsaif, K.A.
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.111-130
    • /
    • 2012
  • Satellites with flexible lightweight solar panels are sensitive to vibration that is caused by internal actuators such as reaction or momentum wheels which are used to control the attitude of the satellite. Any infinitesimal amount of unbalance in the reaction wheels rotors will impose a harmonic excitation which may interact with the solar panels structure. Therefore, quenching the solar panel's vibration is of a practical importance. In the present work, the panels are modeled as laminated composite beam using first-order shear deformation laminated plate theory which accounts for rotational inertia as well as shear deformation effects. The vibration suppression is achieved by bonding patches of piezoelectric material with suitable dimensions at selected locations along the panel. These patches are actuated by driving control voltages. The governing equations for the system are formulated and the dynamic Green's functions are used to present an exact yet simple solution for the problem. A guide lines is proposed for determining the values of the driving voltage in order to suppress the induced vibration.

Flexural Vibration Analysis of Mindlin Rectangular Plates Having V-notches or Sharp Cracks (V노치 또는 예리한 균열을 가지는 Mindlin 직사각형 평판의 휨 진동해석)

  • Kim, Joo-Woo;Jung, Eui-Young;Kim, Seung-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.35-42
    • /
    • 2003
  • This paper provides the first known flexural vibration data for thick (Mindlin) rectangular plates having V-notches. The V-notch has bending moment and shear force singularities at its sharp corner due to the transverse vibratory bending motion. Based upon Mindlin plate theory, in which transverse shear deformation and rotary inertia effects are considered, the Ritz procedure is employed with a hybrid set of admissible functions assumed for the rotational and transverse vibratory displacements. This set includes: (1) a mathematically complete set of admissible algebraic-trigonometric polynomials which guarantee convergence to exact frequencies as sufficient terms are retained; and (2) an admissible set of Mindlin corner functions which account for the bending moment and shear force singularities at the sharp corner of the V-notch. Extensive convergence studies demonstrate the necessity of adding the Mindlin corner functions to achieve accurate frequencies for rectangular plates having sharp V-notches.

  • PDF

Critical Fluid Velocity of Fluid-conveying Cantilevered Cylindrical Shells with Intermediate Support (중간 지지된 유체 유동 외팔형 원통셸의 임계유속)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.422-429
    • /
    • 2011
  • The critical fluid velocity of cantilevered cylindrical shells subjected to internal fluid flow is investigated in this study. The fluid-structure interaction is considered in the analysis. The cantilevered cylindrical shell is supported intermediately at an arbitrary axial position. The intermediate support is simulated by two types of artificial springs: translational and rotational spring. It is assumed that the artificial springs are placed continuously and uniformly on the middle surface of an intermediate support along the circumferential direction. The steady flow of fluid is described by the classical potential flow theory. The motion of shell is represented by the first order shear deformation theory (FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with existing results.

Measuring Timing Properties of PSR B0540-69

  • Kim, Minjun;An, Hongjun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.55.2-55.2
    • /
    • 2018
  • Neutron stars (NS) are rapidly spinning compact objects. Their rotation energy is released by particles, electromagnetic waves, and even gravitational waves. The source of the energy is of course the rotation, so by studying the rotational properties of neutron stars, we can gain some insights into matter under extreme conditions. In particular, it is known that the braking index n is sensitive to the moment of inertia and/or NS winds. The neutron star PSR B0540-69 exhibits interesting timing behavior; previous measurements of the braking index for this pulsar may suggest a change in time. In order to see if the change is real, We investigate the timing properties of B0540-69 using recent ~1000-days Swift satellite data.

  • PDF

Analysis to reduce the acceleration time and deceleration time of direct drive robot (직접구동형로봇의 가감속시간 단축에 관한 연구)

  • 임규영;이광남;고광일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.372-376
    • /
    • 1990
  • This paper represents a control method of improving the performance of direct drive robot. The direct transfer of torque and rotational speed of direct drive motor to the robot body without reduction gear makes the robot speed fast. However, the variation of inertia matrix and low friction cause the control difficult, and one more effort must be in the reducing the acceleration and deceleration time to reduce the cycle time. To fasten the cycle time and to improve the robustness of robot, one control method is developed, and implemented in the Goldstar DD robot. This method does not need to change the conventional PI type control structure, but one additional compensational control law is required. The control law can be obtained via inverse dynamic model of robot, and inverse model of existing control loop. The effects of this control law are shown in this paper.

  • PDF