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ABSTRACT-The detection of engine misfire events is one of major concerns in engine control due to its negative effect
on air pollution and engine performance. In this paper, a misfire detection system based on crankshaft angular speed
fluctuation is developed. Synthetic variable method is adopted for the preprocessing of crankshaft angular speed. This
method successfully estimates the work output of each cylinder by finding the effect of combustion energy on the
crankshaft rotational speed or acceleration after virtually removing the effect of the internal inertia forces from the
measured crankshaft speed signals. The detection system is developed using neural network with the revised synthetic
angular acceleration as input which is derived from the preprocessing. Mathematical simulation is carried out for
developing and verifying the misfire detection system. Finally, the reliability of the developed system is validated through

an experiment.
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NOMENCLATURE

J(@ :moment of inertia, a function of crankshaft
: angular position [kgm’]

J : constant moment of inertia [kgm?]

J. : moment of inertia of connecting rod about rod

mass center [kgm?]

J(6) : moment of inertia of connecting rod and piston
about the crankshaft axis [kgm?]

: moment of inertia of crankshaft and flywheel
about the crankshaft axis [kgm’]

: polytropic index [—]

: center-to-center length of connecting rod [mi]

: distance from connecting rod mass centet to
crank end center [m]

: mass of connecting rod and bearings [kg]

: mass of piston and wrist pin assembly [kg]

: cylinder number [—]

i cylinder pressure [Pa]

: crank radius [m]

Tictionsmping - friction and pumping torque [kgm]

&~

S

SRR

T, ema - €Xternal torque [kgm]
t : time [s]

Vv : cylinder volume [m?]
£ : compression ratio [—]

*Corresponding author. e-mail: msunwoo@hanyang.ac kr

0 : angular displacement of crankshaft [rad]
0 : angular velocity [rad/s]

é : angular acceleration [rad/s’]

T : stroke number [-]

SUBSCIPTS

ce : compression and expansion

comb : combustion

ic : inlet close

rev  :removing comression/expansion work

syn  :synthetic
1. INTRODUCTION

Misfire is a condition in which there is little combustion
due to ignition failure, lack of fuel, or insufficient com-
pression, etc. Misfires are grouped into two types:
random misfire and continuous misfire. Random misfires
occur intermittently due to engine operation and road
condition. Continuous misfires are repeating misfires
caused by abnormal operation of the ignition plug,
injector, intake/exhaust valve malfunction, etc. Misfires
create partial burn or unburned exhaust gas. Thus, they
are major sources of air pollution, and they damage
catalysts mounted on all gasoline engine vehicles. More-
over, repetitive misfires increase engine vibration and
noise which damage the stiffness of vehicle body. There-
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fore, the detection of engine misfire events is a major
concern in automotive engineering due to its relation to
air pollution and engine performance.

In recent years, air pollution has become worse due to
rising vehicle exhaust gas emissions. As a result new
stringent regulations have been invoked such as OBD-II
and EURO-III in America and Europe. Therefore, the
development of misfire detection system is now one of
the major research areas in the automotive industry.
Misfire detection systems use crankshaft speed fluctu-
ations (Forster ef al., 1990; Wu et al., 1998; Moro et al.,
1998; Nareid et al., 2004; Mahieu et al., 2000), exhaust
gas pressure (Ceccarani ef al., 1998; Willimowski ef al.,
2000), cylinder chamber ionic current (VanDyne ef al.,
2000) and structure-borne sound (Villarion ef al., 2004)
for detecting misfire events. The two major considera-
tions in the design of a misfire detection system are the
cost and the detection rate of the misfire detection
method. In this regard, the best detection method is
crankshaft speed detection unlike the other three methods.
Crankshaft speed based detection does not require any
additional sensors which reduces the cost. However, its
detection rate is not as high as the other method, but high
enough to provide the necessary level of performance.

In this paper, a misfire detection system using crank-
shaft angular speed fluctuation is developed. When misfires
occur, insufficient torque is generated due to reduced
combustion in the cylinder. The generated torque from
combustions can be used for detecting misfire. However,
direct measurement of the generated torque is impossible.
Thus an estimation method for engine torque using
crankshaft speed is generally employed. This method has
some advantages in terms of cost and performance. Also
it is better suited for mass production since it is less
complex than the other techniques. However it has some
difficulties for detecting individual cylinder misfire parti-
cularly during low load, high speed operations.

The misfire detection procedure for this research is shown
in Figure 1. The first stage is acquiring the engine crankshatft
speed. The second is preprocessing and feature extraction in
order to transform the raw speed data into the proper form.
The last stage is pattern recognition for detecting misfire
events using a neural network. Mathematical simulation is
carried for developing and verifying the misfire detection
system. Then the reliability of the developed system is
validated through an experimental data.
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Recognition)
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Figure 1. Misfire detection procedure.

Model Overview

Etmmust Gas

©, 8, QH, 5 Hy .0,
C0, 00, M Mo, NO. CH,

i
g

Exhaust Manifold  Muffler
L TwoZone Combustion Chamber

Crank Shaft

Figure 2. Engine++ model overview.

2. ENGINE MODEL FOR MISFIRE
DETECTION SYSTEM

Development time and cost for designing control or
diagnosis system can be reduced by math-model based
simulations (Yoon et al., 2005). However, the mathe-
matical model must be accurate enough to represent the
real plant. A very precise model, such as a cylinder-by-
cylinder combustion model, is needed for developing a
misfire detection system based on crankshaft angular
velocity fluctuation.

2.1. Selection of Engine Model

A preprocessing and detecting algorithm can be casily
developed by math-model based simulation without any
experiment, In order to detect misfires with crankshaft
speed fluctuations, torque generation resulted by
combustions for each cylinder must be needed, so that the
crankshaft speed fluctuation appears in simulation results.
There are some widespread commercial engine models
such as Engine++ by SimuQuest, EngineSim by SimCar,
and GT-Power by Gamma technology. Among these three
engine models, the Engine++ is appropriate for
developing misfire detection system because the
Engine++ has cylinder-by-cylinder combustion models,
and is fast and accurate enough for designing misfire
detection system.

2.2. Features of Engine++

Engine++ is a MATLAB Simulink block based engine
model. Some or the general features of this model are
described in Figure 2. With Engine++ mathematical
models for each part such as throttle, intake manifold,
combustion chamber, exhaust manifold can be customiz-
ed according to the user’s purposes. It is a very reliable
model because it is a zero-dimensional model. It is also
physics based model derived from the mass and energy
conservation. Moreover, the better performances and
reliabilities are obtained by separating the exhaust gases
into 12 different partial gases.
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3. PREPROCESSING FOR MISFIRE
DETECTION

The misfire detection system performs data acquisition,
preprocessing and feature extraction, and classification
(Figure 1). In this chapter, a preprocessing method using
synthetic variables (Moskwa et al., 2000) is explained in
terms of detection target selection and preprocessing.

3.1. Preprocessing with Synthetic Variables

A crankshaft angular speed fluctuation based misfire
detection method has the advantage of utilizing crank-
shaft speed sensors, such as an optical encoder or a
magnetic pickup which are widely available, relatively
robust and inexpensive. This enables to a non-intrusive,
reliable and practical strategy of engine diagnostics with
the methods of pattern recognition or model-based
diagnostics. However, with this method it is difficult to
determine combustion quality in small and medium size
SI and CI engines because internal rotational inertia force
originating from the reciprocating mechanism is varies
greatly with respect to the engine speed. In order to
overcome these difficulties, synthetic variables for crank-
shaft speed are utilized. This approach is to successfully
estimate the work output of each cylinder by finding the
affects of combustion energy on the crankshaft rotational
speed or acceleration after electrically removing the
effects of the internal inertia forces from the measured
crankshaft speed signals. Additionally, this approach can
be used for an engine control because of their simplicity,
linearity and consistency.

3.1.1. Crankshaft rotational dynamics

Crankshaft rotational dynamics can be modeled in many
ways depending on the intended use of the model. Some
models assume that the crankshaft, connecting rod and
piston assemblies in the engine can be considered as
having a constant rotational polar inertia when viewed
from the perspective of crankshaft rotation. This is often
used in control when requiring simplified and linear
models, and is a reasonable assumption for a well-
balanced engine with multi-cylinders. If the crankshaft
with this assumption is chosen as a free body and
Newton’s second law is applied, the dynamic equation
can be expressed as follows.

j : 6 = zn: ‘Pl : % +Z Tﬁ'chion/pump + z Texrernol (1)
i=1

The indicated torque from each cylinder, load torque
from the drivetrain and any ancillary devices, and
friction/pumping torque are applied to the crankshaft
causing its acceleration and deceleration.

But the polar moment of inertia is not constant in an
actual engine and it is related to a few factors such as

mass, geometry, configuration, and crankangle. In the
version of the model used in this paper, the engine
rotational dynamics utilize a rigid crankshaft model with
fully nonlinear rotational dynamics. All of the crank-
angle-varying inertial effects that result from the slider-
crank mechanism of each cylinder (e.g., the crankshaft/
con-rod/piston kinematics) are included in the dynamic
equation because the dynamic effects from these linkages
increase dramatically at high engine speeds. Its govern-
ing equation derived from Lagrange’s methodsneglecting
the gravity force, is given as:
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In equation (2), the inertia depends on the engine’s
physical parameters and is a function of crankshaft
angular position. For an individual cylinder, the polar
moment axis is given as follows (Shiao ef al., 1994).
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For a typical engine with even firing orders, the
varying inertia and its derivatives of the slider-crank
mechanism can be expressed as follows:
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3.1.2. Synthetic variables

By comparing equation (1) and (2), one can see that the
right-hand sides are identical for any working engine.
Therefore, the left-hand sides equal each other as shown
in equation (7). J is independent of the crankangle
because the constant inertia engine model takes only the
polar moment of inertia into consideration and treats it as
a constant value. This means that the constant inertia
engine model not only ignores the engine inertia vari-
ations, but also fails to accommodate the effects of the
velocity related inertia torque. A methodology, therefore,
has been put forward. The real measured engine speed
can be combined with the nonlinear rotating dynamics to
remove the varying inertia effects and generate a linear

“synthetic” acceleration as shown in the following

equations.

- 5 107(8) o

JO,, =J(0)0+——20 N
syn ( ) 2 a 9

This equation can then be rearranged and integrated to
produce an expression that can generate another linear
“synthetic” engine speed.
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The benefits of using these “synthetic” variables are
several. Firstly, the actual nonlinear engine rotational
dynamics can be treated as linear when using the “synthetic”
acceleration and velocity. This will greatly simplify the
control and diagnostics tasks. Secondly, the waveform of
the “synthetic” variables do not change as the mean
engine speed changes, therefore the speed dependency is
completely eliminated which can mean a large reduction
in the size of the diagnostic strategy code. Another bene-
fit is that the “synthetic” acceleration is directly propor-
tional to summation of applied torques. If the external
load torque and friction/pumping torque are known, the
torque from combustion can then be clearly identified.

3.1.3. Modifications for compression/expansion work

As presented in equations (1) and (2), the rotation of the
crankshaft is the result of indicated torque from com-
bustion pressure and other external torques applied on the
shaft. Therefore, the net working gas torque causes the
crankshaft to accelerate or decelerate when the engine is
running without load. The working gas pressure is
composed of the pressure in compression/expansion and
those that increase due to combustion during this process.
If the periodically changed compression/expansion work
can be removed from the working gas torque, only the
torque from combustion will remain and its effects will
probably be more apparent and not masked by com-

pression and expansion work.
Based on the distribution and combination law, the
working gas torque can be rearranged as follows.

oV, 2 a7, 10
Zpae ,[])”e’aa+; T 10

P..; is an individual cylinder pressure without firing,
P, is the rise in cylinder pressure caused by com-
bustion only and is the difference between P, and P..,.
" In order to consider the torque only caused from
combustion, it is defined as in the following equation by
subtracting equation (10) from equation (7).

14

7'synrev - z ce,i ag (11)

B.yn,e, 1s the revised synthetic angular acceleration
removed compression/expansion. work from original
synthetic angular acceleration.

If the nonlinear rotational dynamics is apphed the

“synthetic” acceleration and speeds can be re-written.
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P..; can be measured for the target engine or calculated
from an assumed polytropic process of compression and
expansion between the intake port closing and the
exhaust port opening.
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3.2. Simulations

In order to check the influence of derived synthetic
variables, simulations were conducted for an 1.4 liter,
inline 4 cylinders gasoline Engine++ model, with the
intention of verifying the differences between existence
and nonexistence of misfires

3.2.1. Polar moment of inertia

Figures 3 and 4 show the variation of polar moment of
inertia and its derivative with respect to crankangle. The
moment of inertia is repeated periodically, and peaks
occur near 90°, 270°, 450°, and 630° from the top dead
center for cylinder 1 of the engine.
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Figure 3. Variation of moment of inertia.
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Figure 4. Derivative of moment of inertia.
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12, 2,
d esyn vsd 9syn,rev

de[1/s7]

150 . . ; . . .
5 0 360 720 1080 1440 1[300 2160 2520 2880 3240 3600
6[deg]

Figure 6. Syn. acceleration and revised syn. Acceleration.

3.2.2. Synthetic angular velocity
Figure 5 is a plot of the synthetic speed around 2000 rpm.
There are four misfires around 720°, 1440°, 2160°, and
2880° which are indicated with the arrows

The dotted line represents the crankshaft angular
speed, and solid line does synthetic speed. The peak-to-
peak magnitude of synthetic speed is larger than that of
crankshaft angular speed because synthetic speed is
calculated by removing inertia effects from the angular
speed.
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Figure 7. Compression and expansion work.

3.2.3. Revised synthetic angular acceleration

Figure 6 shows the revised synthetic angular acceleration
by subtracting the compression/expansion work express-
ed by a waveform of Figure 7 from 8,,, . It helps detect-
ing misfire events easily since the pure torque generated
by combustion can be obtained.

4. MISFIRE DETECTION

In this chapter, the misfire detection process using the
neural network is described in terms of detection
algorithm development and algorithm verification using
simulation.

4.1. Detection Algorithm

There are several learning rules such as Hebbian, Widrow-
Hoff, Kohonen, and Backpropagation which are general-
ly used in learning neural networks. In this paper, the
Backpropagation method is adopted because it is best for
classifying patterns (Hagan et al., 1995; Nigrin et al.,

Signal b Neural

i Mistire. - Misfire
R Preprocessing Network

Decision

Indication

RPM |

Figure 8. Schematic diagram of misfire detection system.
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Figure 9. Neural network for misfire detection.
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Table 1. Misfire detection rates of simulation for 4-

cylinder engine. (unit %)
Misfire Pattern
Speed Continuous Misfire  Random No
1 3 1,3 24 Misfire Misfire

1000 rpm 100 99.8 99.6 994  99.2 99.8
2000 rpm 100 100 99.8 100 100 100
3000 rpm 99.8 100 99.6 998  99.6 100

4000 rpm 99.6 99.8 992 994 988 99.8

1993; Park et al., 2001).

The procedure used in the misfire detection system is
depicted in Figure 8. From the crankshaft encoder signal
the angular velocity is calculated at 30° intervals. In the
signal preprocessing stage, the revised synthetic angular
acceleration is obtained. Then, and are applied to the
neural network. At last, a misfire is determined by com-
paring the outputs of the neural network with a threshold
value. A constructed neural network for detecting misfire
is shown in Figure 9. The network is composed of three
layers: the input, hidden, and output layer. The input layer
has vectors of and which have sizes of 24 and 1 respec-
tively. The hidden layer is composed of 12 neurons. The
outputs are defined by a vector which indicates the
portion of the misfire. The tansig function is used for the
transfer function of each layer. The output values larger
than 0.7 indicate that misfire occurs in the corresponding
cylinder.

The neural network must be trained for detecting mis-
fire events. The backpropagation rule is used for training,
and this is the most important part of constructing the
neural network. Since the network is trained using the
input and output relationship of the system, the input and
output data must be acquired for various engine operating
conditions and misfire patterns.

The training is accomplished by determining the
weight factors with the acquired data.

4.2. Verification of Algorithm
The simulink engine model is used for testing the neural
network.

After calculating using the angular velocity acquired
from the simulation results, the data are applied to the
neural network. Because training has to be preceded in
the misfire detection process, random and continuous
misfire for single and multiple cylinder data are acquired
at operation of 1000, 2000, 3000, and 4000 rpm under the
various load conditions. About 500 cycles of data are
captured under each condition creating a total acquired
data set of approximately 20000 cycles. These data are
used for training the neural network. The trained network

is cross-validated using another simulation data set under
the conditions referenced in Table 1. Table 1 shows that
the total detection rate is as high as 99% for 5000 cycles
(200 cycles 25 conditions).

5. EXPERIMENTAL RESULTS

The misfire detection system is validated by simulation in
previous chapter. The combustion quality is varying for
every cycle and there exist a noise which disturbs detect-
ing misfire events. Because these are not appeared in
simulation the misfire detection system must be verified
with experimental results.

5.1. Experimental Environment

In this study, a 2-liter, inline-4-cylinder, CRDI diesel
engine mounted on an EC dynamometer is used. The
target signal is extracted from the pre-installed magnetic
pickup sensor. A Micro-Autobox by dSPACE is utilized
for operating engine.

5.2. Misfire Detection System Verification

5.2.1. Neural network training

Pattern recognition using neural network relies on the
experience of the patterns, thus the neural network needs
to be trained for the overall operating conditions. In order
to obtain overall operating data, many experiments are
conducted for the various conditions over 10000 cycles,
focusing on the general engine operating points
referenced in Table 2.

Table 2. Experimental conditions.

Conditions
1000, 1500, 2000, 2500, 3000 rpm
3 kgfm~10 kgfm

No misfire, Random misfire,
Continuous misfire (Single & Multiple)

Ttems

Engine speed

Engine torque

Misfire

Table 3. Misfire detection tates for 4-cylinder engine with
preprocessing. (unit %)

Misfire pattern

Speed Continuous misfire  Random No
Single cyl. Multiple cyl. misfire misfire

1000 rpm 100 100 973 992

1500 rpm 98.3 975 99.2  99.8

2000 rpm 99.2 97.4 96.6 100

2500 rpm 99.5 93.3 948 982

3000 rpm 99.2 98.6 994 992
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Table 4. Misfire detection rates for 4-cylinder engine

without preprocessing. (uint %)
Misfire pattern
Speed Continuous misfire  Rapndom No
Single cyl. Multiple cyl. misfire misfire
1000 rpm 98.8 98.2 946 982
1500 rpm 97.7 95.7 98.7  98.7
2000 rpm 99.2 9719 “ 926 964
2500 rpm 97.9 96.2 90.1 936
3000 rpm 97.4 95.8 972 976

5.2.2. Misfire detection results

The experimental results are shown in Tables 3 and 4.
Table 3 shows the results of the proposed misfire detec-
tion system with preprocessing, and Table 4 shows the
results of the misfire detection system without prepro-
cessing. The disagreements of these results are definitely
as the results shown in the tables. The average detection
rates are about 98% and 96% with and without prepro-
cessing.

6. CONCLUSIONS

In this paper, the misfire detection system with synthetic
variable method for preprocessing of crankshaft angular
speed and neural network for defection algorithm is
introduced. The effects of varying inertia due to crank-
shaft rotation and compression/expansion work are
removed by the synthetic variable method. Consequently,
the angular speed variation from combustion is remained.
This method has advantages of detecting misfire events
because the work output of each cylinder can be estimat-
ed. In addition the nonlinear rotational dynamics can be
modeled as linear by this technique, and the speed
dependency between waveform of the synthetic variables
and the mean engine speed is completely eliminated.
Based on these preprocessing the misfire detection
algorithm is developed using a neural network. Prior to
the experiments, the applicability of developed misfire
detection system is evaluated by means of mathematical
engine model simulations. Typical crankshaft speed
fluctuation based misfire detection system has difficulties
for detecting individual cylinder misfire events. The
developed misfire detection system, however, allows
detecting individual cylinder misfire events with high
accuracy. Then the misfire detection system is validated
by experimental data. In order to evaluate the effective-
ness of preprocessing method, the results of the detection
system with and without preprocessing are compared.
Since it is possible to estimate the generated torque from
combustion with the preprocessing technique, cylinder

pressure can be reconstructed through further research.
Furthermore it is expected that precise engine control can
be achieved by the reconstructed cylinder pressure.
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