• Title/Summary/Keyword: rotation method

Search Result 2,450, Processing Time 0.034 seconds

Comparisons Among Functional Methods of Axis of Rotation Suitable for Describing Human Joint Motion (인체 관절운동 기술에 적합한 회전축 추정방법의 비교)

  • Kim, Jin-Uk
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.449-458
    • /
    • 2011
  • There are many functional methods for estimating the mean axis of rotation of a joint. However, it is still a controversial issue which method is superior. The purpose of this study was to compare functional methods for estimated axes of rotation from synthetic data. The comparison was made in terms of suitabilities on describing humans in sports. For a more practical situation, the axis error as well as measurement and marker movement error were applied to generated data. Simulations having 1000 times of 80 rotational displacements were performed. The functional methods used in the study were two transformation methods, two fitting methods, and one more transformation method called M. The M method is a combination of S$\ddot{o}$derk & Wedin(1993) and Mardia & Jupp(2000). Another factor of the study was angular velocity with levels of .01, .025, .05, .5 and 1 rad/s. The method M resulted in unbiased, stable, and consistent axis of rotation vectors in all levels of angular velocity except .01 rad/s. Therefore, the method M had the highest validity and reliability of all the methods. The fitting methods were very sensitive in small angular velocities and stable only in the velocities of more than .5 rad/s. The most suitable method for analyzing human motion by using marker photogrammetry is M.

Measurement of magnetic kerr rotation and faraday fotation angles by polarization modulation method (편광 변조 방법에 의한 자기 Kerr 회전각 및 Faraday 회전각 측정)

  • 이용호;이상수;이용호
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.105-110
    • /
    • 1992
  • In order to measure fine rotation angles by magneto-optic effects of magneto-optical recording thin films, a polarization modulation method is used. In the experiment, the polarization of laser (He-Ne laser) beam is modulated by a Faraday rotator and the amplified modulated signals are selectively detected by phase sensitive detector. The magnetic Kerr rotation and Faraday rotation hysteresis loops are investigated by this method for thermally evaporated amorphous TbFeCo thin films and RF sputtered garnet thin films. Rotation angles about $0.25^{\circ}$ are measured easily from TaFeCo thin films. In the case of longitudinal Kerr rotation, very small rotation angle of $2.5\times10^{-3^\circ}$ is measured with good accuracy of the measurement (about $1\times10^{-3^\circ}$). And it is found that each thin films have the hysteresis curves of high coercivity and good squareness.

  • PDF

Rotation-Free Transformation of the Coupling Matrix with Genetic Algorithm-Error Minimizing Pertaining Transfer Functions

  • Kahng, Sungtek
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.3
    • /
    • pp.102-106
    • /
    • 2004
  • A novel Genetic Algorithm(GA)-based method is suggested to transform a coupling matrix to another, without the procedure of Matrix Rotation. This can remove tedious work like pivoting and deciding rotation angles needed for each of the iterations. The error function for the GA is simply formed and used as part of error minimization for obtaining the solution. An 8th order dual-mode elliptic integral function response filter is taken as an example to validate the present method.

A Study of Implementing Efficient Rotation for ARX Lightweight Block Cipher on Low-level Microcontrollers (저사양 마이크로 컨트롤러에서 ARX 경량 암호를 위한 효율적인 Rotation 구현 방법 연구)

  • Kim, Minwoo;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.3
    • /
    • pp.623-630
    • /
    • 2016
  • Heterogeneous IoT devices must satisfy a certain level of security for mutual connections and communications. However, a performance degradation of cryptographic algorithms in resource constrained devices is inevitable and so an optimization or efficient implementation method is necessary. In this paper, we study an efficient implementation method for rotation operations regarding registers for running ARX lightweight block ciphers. In a practical sense, we investigate the performance of modified rotation operations through experiments using real experiment devices. We show the improved performance of modified rotation operations and discover the significant difference in measured performance between simulations and real experiments, particularly for 16-bit MSP microcontrollers.

End shape and rotation effect on steel pipe pile installation effort and bearing resistance

  • Saleem, Muhammad A.;Malik, Adnan A.;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.523-533
    • /
    • 2020
  • The current study focuses on the effect of the end shape of steel pipe piles on installation effort and bearing resistance using the pressing method of installation under dense ground conditions. The effect of pile rotation on the installation effort and bearing resistance is also investigated. The model steel piles with a flat end, cone end and cutting-edge end were used in this study. The test results indicated that cone end pile with the pressing method of installation required the least installation effort (load) and showed higher ultimate resistance than flat and cutting-edge end piles. However, pressing and rotation during cutting-edge end pile installation considerably reduces the installation effort (load and torque) if pile penetration in one rotation equal to the cutting-edge depth. Inclusion of rotation during pile installation reduces the ultimate bearing resistance. However, if penetration of the cutting-edge end pile equal to the cutting-edge depth in one rotation, the reduction in ultimate resistance can be minimized. In comparing the cone and cutting-edge end piles installed with pressing and rotation, the least installation effort is observed in the cutting-edge end pile installed with penetration rate equal to the cutting-edge depth per rotation.

Estimation of Rotation Center and Rotation Angle for Real-time Image Stabilization of Roll Axis. (실시간 회전영상 안정화를 위한 회전중심 및 회전각도 추정 방법)

  • Cho, Jae-Soo;Kim, Do-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.153-155
    • /
    • 2004
  • This paper proposes a real-time approach on the rotational motion estimation and correction for the roll stabilization of the sight system. This method first estimates a rotation center by the least-mean square algorithm based on the motion vectors of some feature points. And, then, a rotation angle is searched for a best matching block between a reference block image and seccessive input images using MPC(maximum pixel count) matching criterion. Finally, motion correction is performed by the bilinear interpolation technique. Various computer simulations show that the estimation performance is good and the proposed algorithm is a real-time implementable one to the TMS320C6415(500MHz) DSP.

  • PDF

Molding Method Determination of Cushion for Improving Reliability of the Rotation Driving System (회전 구동부의 신뢰성 개선을 위한 쿠션 성형 방법의 결정)

  • Nam, Yoonwook;Son, Kijoong;Sung, Si-Il
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.207-212
    • /
    • 2017
  • Purpose: This article provides an efficient cushion molding method for improving reliability of the rotation driving system. Method: Allowable stress level for cushion is calculated by using physical characteristics of the rotation driving system. In addition, various test units are manufactured and used to conduct the rebound resilience, the burst pressure and the alternating load test. Results: Actual allowable stress level and test results of the rebound resilience, the burst pressure and the alternating load test are provided. Conclusion: The cushion manufactured by the compression molding method gives more preferable characteristics for improving the reliability of the rotation driving system.

Simple Method of Evaluating the Range of Shoulder Motion Using Body Parts

  • Yun, Yeo-Hon;Jeong, Byeong-Jin;Seo, Myeong-Jae;Shin, Sang-Jin
    • Clinics in Shoulder and Elbow
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • Background: The purpose of this study is to assess the range of shoulder motion using an indirect evaluation method without physical examinations of patients based on questionnaires regarding several specific arm postures referenced by patient's own body parts. Methods: Nine criteria of specific shoulder motion including 4 forward flexion, 2 external rotation, and 3 internal rotation were decided as reference position which can represent a certain shoulder motion. Flexion contains postures such as lifting arm to waist-height, shoulder-height, eye-height, and raising arm above head with arm touching ears. External rotation comprises grasping ears and placing hands on back of the head. Vertebral height in internal rotation is determined by calculating the samples' motions, which are holding on to trouser belts, opposite-elbow, and scapula. These postures are included in questionnaires for patients to evaluate the validity and effectiveness of this indirect method. Results: The range of flexion was $77^{\circ}$ ($60^{\circ}$ to $100^{\circ}$), $96^{\circ}$ ($87^{\circ}$ to $115^{\circ}$), $135^{\circ}$ ($115^{\circ}$ to $150^{\circ}$), and $167^{\circ}$ ($150^{\circ}$ to $175^{\circ}$) when arms go up to waist, shoulder, eye, and high vertically. Range of external rotation was $39.6^{\circ}$ ($30^{\circ}$ to $50^{\circ}$) when grasping ears and $69.2^{\circ}$ ($60^{\circ}$ to $80^{\circ}$) with the hands on the back of the head. Range of internal rotation was L4 when placing trouser belts, T12 for holding opposite elbow, and T9 for reaching scapula. The mismatch rates of flexion, external rotation, and internal rotation were 11.6%, 9.6%, and 7.8%. Conclusions: The range of shoulder motion using this method is expected to be applied to an established shoulder scoring system which included shoulder motion evaluation item.

Object Slippage and Rotation Sensing Method in Tactile Image (Tactile 영상에서 물체 움직임 감지 기법)

  • 이영재
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.10
    • /
    • pp.643-654
    • /
    • 2003
  • This paper proposes slippage and rotation sensing method in tactile image of robot griper. To overcome the demerits of inaccurate taxel positional sensing generated by previous moment method and edge & line method according to constraints of taxet number changing or minimum taxel number, the proposed method classified the sensing method into two classes such as pixel status analysis and decision factor determination. The decision factor determines taxel threshold for filtering and sensing method choice based on moment method and edge & line method. Computer simulations and experiment result show that the proposed method enhances the slippage and rotation sensing than previous methods for tactile image.

  • PDF

A Simple Method to Determination the Rotation Angle Between an Image and its Diffraction Pattern with LACBED Patterns (LACBED 패턴으로부터 전자현미경 상에 대한 회절도형의 회전각을 측정하는 간단한 방법)

  • Kim, Hwang-Su;Kim, Jong-Pil
    • Applied Microscopy
    • /
    • v.33 no.3
    • /
    • pp.187-193
    • /
    • 2003
  • When electron microscope images and selected area diffraction patterns of crystalline materials are being compared, it is important to know for the rotation of the diffraction pattern with respect to the image caused by the magnetic lens in the Electron Microscope. A well-known method to determine this rotation is to use a test crystal of $MoO_3$. But this method of determination of the rotation angle contains an uncertainty of $180^{\circ}$. Thus one has to devise another way to eliminate this uncertainty. In this paper we present a new and simple method of determining this rotation without any complexity. The method involves a process of obtaining LACBED patterns of crystalline materials. For the J2010 electron microscope, the rotation is determined to be $180^{\circ}$ and this angle remains unchanged for changing of the magnification and the camera length.