• Title/Summary/Keyword: rotating shaft

Search Result 370, Processing Time 0.025 seconds

Bi-spectrum for identifying crack and misalignment in shaft of a rotating machine

  • Sinha, Jyoti K.
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.47-60
    • /
    • 2006
  • Bi-spectrum is a tool in the signal processing for identification of non-linear dynamic behvaiour in systems, and well-known for stationary system where components are non-linearly interacting. Breathing of a crack during shaft rotation is also exhibits a non-linear behaviour. The crack is known to generate 2X (twice the machine RPM) and higher harmonics in addition to 1X component in the shaft response during its rotation. Misaligned shaft also shows similar such feature as a crack in a shaft. The bi-spectrum method has now been applied on a small rotating rig to observe its features. The bi-spectrum results are found to be encouraging to distinguish these faults based on few experiments conducted on a small rig. The results are presented here.

Seismic Behavior of Rotation Shaft System at Start-up (기동시 회전축계의 지진응답 거동)

  • 김상환
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.63-69
    • /
    • 1998
  • A rotating shaft system subjected to seismic motions has been investigated for the various operating modes at start-up. During an earthquake excitation, the rotor may hit the stator of machines due to the excessive deformation of shaft, and thus the response of rotating shaft system of which foundation is supported by the vibration isolation devices has been simulated. In order to examine the transient response of the rotating shaft system at the start-up to both the various operating conditions and the seismic excitation simultaneously, nonlinear equations of motion are derived and solved numerically using Runge-Kutta method. The response of the rotating shaft system is calculated according to the operating modes as recommended by the machine and the system parameters such as the spring stiffness of isolation devices.

  • PDF

Thrust Bearing Design for High-Speed Composite Air Spindles (고속 복합재료 공기 주축부를 위한 추력베어링 설계)

  • Bang, Kyung-Geun;Lee, Dai-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.1997-2007
    • /
    • 2002
  • Composite air spindles are appropriate for the high-speed and the high-precision machining as small hole drilling of printed circuit board (PCB) or wafer cutting for manufacturing semiconductors because of the low rotational inertia, the high damping ratio and the high fundamental natural frequency of composite shaft. The axial load and stiffness of composite air spindles fur drilling operation are determined by the thrust ben ring composed of the air supply part mounted on the housing and the rotating part mounted on the rotating shaft. At high-speed rotation, the rotating part of the thrust bearing should be designed considering the stresses induced by centrifugal force as well as the axial stiffness and the natural frequency of the rotating shaft to void the shaft from failure due to the centrifugal force and resonant vibration. In this work, the air supply part of the thrust bearing was designed considering the bending stiffness of the bearing and the applied load. The rotating part of the thrust bearing was designed through finite element analysis considering the cutting forces during manufacturing as well as the static and dynamic characteristics under both the axial and con trifugal forces during high-speed rotation.

Milling characteristics of cutting-type rice milling machine according to the rotating speed of the main shaft

  • Cho, Byeong-Hyo;Han, Chung-Su;Kang, Tae-Hwan;Lee, Dong-Il;Won, Jin-Ho;Lee, Hee-Sook
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.416-423
    • /
    • 2017
  • This study aimed to identify milling characteristics depending on the rotating speed of the main shaft of the cutting-type rice milling machine which can minimize the conventional milling process. Brown rice, which was produced in Gunsan-si, Jeollabuk-do, Republic of Korea, in 2016, was used as the experimental material. The milling characteristics of white rice were measured under four different rotating speeds of main shaft: 950 - 1,050 rpm, 1,000 - 1,100 rpm, 1,050 - 1,150 rpm, and 1,100 - 1,160 rpm. For each shaft speed, 300 kg of brown rice was processed, and the milling characteristics were measured according to the whiteness, grain temperature, cracked rice ratio, broken rice ratio, turbidity, and energy consumption. The whiteness of rice grain was found to be consistent at around $40{\pm}0.5$ only when milled at the shaft speed of 950 - 1,050 or 1,000 - 1,100 rpm. The grain temperature during the milling process increased by 11.35 to $11.85^{\circ}C$, showing little differences amongst shaft speeds. The cracked rice ratio increased by 8.2 to 10.4% at all conditions. The broken rice ratio ranged from 0.58 to 0.76%, reflecting a low level. The turbidity after milling was 54.8 ppm when milled at 1,000 - 1,100 rpm. Energy consumption of 12.98 and 12.18 kWh/ton were recorded at the shaft speed of 1,000 - 1,100 and 1,050 - 1,150 rpm, respectively. The result of this study indicates that the optimal rotating speed of main shaft would be 1,000 - 1,100 rpm for a cutting-type rice milling machine.

Analysis and development of the angular twist type torque-meter (비틀림각 검출방식을 이용한 토크미터의 해석과 개발)

  • 김지웅;오세훈;이종원;정연두;김진남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.103-110
    • /
    • 2000
  • In this study, the angular twist type torque-meter was designed and manufactured with STS 304 and fiber-reinforced composite materials to improve the dynamic properties of the existing torque-meter. From the Experimental and analytical results, it was found that the dynamic characteristics of co-cured bonded torque-meter rotating shaft were better than those of the adhesively and unreinforced torque-meter rotating shaft. For the torque-meter rotating shaft manufactured by co-cured bonded with the glass fiber-epoxy composite and with a stacking sequence of $[$\pm$30$^{\circ}$/STS304]_{2s}$, the natural frequency and the radial spring constant were increased by 64% and 137% compared to those of the unreinforced torque-meter rotating shaft.

  • PDF

Dynamic Analysis of a Tilted HDD Spindle System due to Roundness (진원도 오차를 고려한 스핀들 시스템의 동적 특성 해석)

  • Koak, Kyu-Yeol;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.840-846
    • /
    • 2007
  • This paper investigates the dynamic behavior of a HDD spindle system due to the imperfect roundness of a rotating shaft. The shaft of a spindle motor rotates with eccentricity by the unbalanced mass of the rotating part. The eccentricity generates the run-out of a spindle motor which results in the eccentric motion of a rotating part. Roundness of a shaft affects this motion which limits the memory capacity of a HDD. This research proposes a modified Reynolds equation for the coupled journal and thrust FDBs to include the variable film thickness due to the roundness. Finite element method is used to solve the Reynolds equation for the pressure distribution. Reaction forces and friction torque are obtained by integrating the pressure and shear stress, respectively. The dynamic behavior is determined by solving the equations of a motion of a HDD spindle system in six degrees of freedom with the Runge-Kutta method to characterize the motion of a rotating part. This research shows that the roundness of a rotating shaft causes the excitation frequency with integer multiple of a rotating frequency.

  • PDF

Structural Integrity Evaluation for the Reactor Coolant Pump Shaft Seal Assembly (원자로냉각재펌프 축밀봉장치에 대한 구조적 건전성 평가)

  • Kim, Minsu;Kim, Minchul;Kim, Oaksug;Chung, Sungho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.44-50
    • /
    • 2017
  • The shaft seal of the reactor coolant pump is installed on the upper side of the rotating shaft of the pump to seal the reactor coolant from flowing out between the rotating shaft and the non-rotating parts. In this study, the loading conditions for the normal operation and faulted conditions are identified and structural integrity evaluation is performed using the finite element stress analysis for the sealing apparatus of the APR 1400 reactor coolant pump. It is confirmed that the stress analysis results satisfy the design criteria at all loading conditions.

Dynamic Behavior Analysis of a Crankshaft-Bearing System in Variable Speed Reciprocating Compressor (가변속 왕복동형 압축기 크랭크축-베어링계의 동적 거동 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.426-434
    • /
    • 2001
  • The hermetic reciprocating compressor driven by the BLDC motor rotating with variable speeds, is modelled and analyzed for dynamic characteristics. The governing equations of piston, connecting rod and crank-shaft of the reciprocating compression mechanism and characteristics of driving torque of the motor are obtained. Dynamic behavior of the crankshaft supported on 2 journal bearings is analyzed considering compression load and eccentric unbalance for the 4 rotating speeds of crankshaft. And. reaction forces generated from oil film in the journal bearings are analyzed under transient condition using Reynolds' equation. To take into account the dynamic characteristics depending on the variable rotating speeds, comparison on the dynamic behavior of crank-shaft is made for the 4 operating modes of the compressor. Results show that the magnitude of crankshaft locioperating on the lower rotating speeds is more larger than the higher ones due to reduction of inertia force of the reciprocating piston.

A Study on Rotating Arc Using Hollow Shaft Motor (중공축 모터를 이용한 회전아크에 관한 연구)

  • 김철희;나석주
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.49-54
    • /
    • 2000
  • High speed rotating arc process, forming a flat bead surface with shallow penetration depth, can be applied to the automatic seam tracking, because the amplitude of current waveform increases at high rotation speed. Two high speed arc rotation mechanisms have been developed in Japan and Germany b rotating the electrode nozzle using an external motor, which are used prevalently for narrow gap and conventional seam welding. In this study, a new rotation mechanism was developed by using a hallow shaft motor designed to be installed in the electrode nozzle. By rotating the welding arc, the amplitude of current waveform increases remarkably since the self-regulation of arc is not fully performed. Experiments show that the arc sensor with high-speed rotation arc has improved its responsiveness and sensitivity.

  • PDF

Dynamic Behavior of Rotating Shaft System Corresponding to Operating Modes (운전모드에 따른 회전축계의 동적거동)

  • Kim, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2744-2751
    • /
    • 1996
  • In case of limited power supply, a rotating shaft system may not reach its operating speed that is greater than its critical speed, but the speed oscillates with small ampllitude near critical speed. As a result, it is considered that the operating mode plays an important role in the smooth start of machines. In order to investigate the dynamic behaviors of the rotating shaft system at the beginning stage, one has derived the equations of motion whose degrees of freedom is three, two translations and one rotation. The simultaneous differential equations are numerically solved by using runge-Kutta method, and thus the small time step length could be required corresponding to the stability of solution. Three types of operating modes dependent upon the driving torque rate have been numerically investigated according to the maximum displacement of shaft center. The first type of relation is linear, the second type is composed of two linear curves recommended by machine manufacturer, and the last one is the proposed torque curve reflecting the frequency response curve of one degree of freedom system. For the second type of modes, it is found that the optimal range of intermediate speed to the critical speed lies between 0.8 and 0.9. In addition to that, the maximum displacement can be reduced more if the third type of mode is utilized.