• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.029 seconds

A Predictive Model of Behavioral Problems in Elementary School Children (초등학교 고학년 아동의 문제행동 예측 모형)

  • Song, Hee Seung;Shin, Hee Sun
    • Child Health Nursing Research
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • Purpose: The purposes of the study were to develop and test a model which explains the relationship among factors affecting behavioral problems in elementary school children. Methods: The participants for the study were 368 elementary school children and their mothers at 3 elementary schools in one city. Data analysis was done using the SPSS 17.0 program for t-test, -test, and ANOVA and the AMOS 17.0 program for theoretical model testing. Results: The theoretical model showed a significant goodness of fit to the empirical data (Goodness of Fit Index: .96, Adjusted Goodness of Fit Index: .93 Comparative Fit Index: .95, Root Mean Square Error of Approximation: .06, Standardized Root Mean Square Residual: .02). Six paths were found to be statistically significant including from child rearing attitude to self-esteem, stress, stress coping and behavioral problems, and from self-esteem to stress and behavioral problems. Child rearing attitude showed a significant effect to behavioral problems by total effect. Self-esteem affected behavioral problems by total and direct effects. Conclusion: Child rearing attitude and selfesteem of children are important factors affecting behavioral problems in elementary school children.

Conversion of Camera Lens Distortions between Photogrammetry and Computer Vision (사진측량과 컴퓨터비전 간의 카메라 렌즈왜곡 변환)

  • Hong, Song Pyo;Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.267-277
    • /
    • 2019
  • Photogrammetry and computer vision are identical in determining the three-dimensional coordinates of images taken with a camera, but the two fields are not directly compatible with each other due to differences in camera lens distortion modeling methods and camera coordinate systems. In general, data processing of drone images is performed by bundle block adjustments using computer vision-based software, and then the plotting of the image is performed by photogrammetry-based software for mapping. In this case, we are faced with the problem of converting the model of camera lens distortions into the formula used in photogrammetry. Therefore, this study described the differences between the coordinate systems and lens distortion models used in photogrammetry and computer vision, and proposed a methodology for converting them. In order to verify the conversion formula of the camera lens distortion models, first, lens distortions were added to the virtual coordinates without lens distortions by using the computer vision-based lens distortion models. Then, the distortion coefficients were determined using photogrammetry-based lens distortion models, and the lens distortions were removed from the photo coordinates and compared with the virtual coordinates without the original distortions. The results showed that the root mean square distance was good within 0.5 pixels. In addition, epipolar images were generated to determine the accuracy by applying lens distortion coefficients for photogrammetry. The calculated root mean square error of y-parallax was found to be within 0.3 pixels.

Characteristics and Prediction of Total Ozone and UV-B Irradiance in East Asia Including the Korean Peninsula (한반도를 포함한 동아시아 영역에서 오존전량과 유해자외선의 특성과 예측)

  • Moon, Yun-Seob;Seok, Min-Woo;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.701-718
    • /
    • 2006
  • The average ratio of the daily UV-B to total solar (75) irradiance at Busan (35.23$^{\circ}$N, 129.07$^{\circ}$E) in Korea is found as 0.11%. There is also a high exponential relationship between hourly UV-B and total solar irradiance: UV-B=exp (a$\times$(75-b))(R$^2$=0.93). The daily variation of total ozone is compared with the UV-B irradiance at Pohang (36.03$^{\circ}$N, 129.40$^{\circ}$E) in Korea using the Total Ozone Mapping Spectrometer (TOMS) data during the period of May to July in 2005. The total ozone (TO) has been maintained to a decreasing trend since 1979, which leading to a negative correlation with the ground-level UV-B irradiance doting the given period of cloudless day: UV-B=239.23-0.056 TO (R$^2$=0.52). The statistical predictions of daily total ozone are analyzed by using the data of the Brewer spectrophotometer and TOMS in East Asia including the Korean peninsula. The long-term monthly averages of total ozone using the multiplicative seasonal AutoRegressive Integrated Moving Average (ARIMA) model are used to predict the hourly mean UV-B irradiance by interpolating the daily mean total ozone far the predicting period. We also can predict the next day's total ozone by using regression models based on the present day's total ozone by TOMS and the next day's predicted maximum air temperature by the Meteorological Mesoscale Model 5 (MM5). These predicted and observed total ozone amounts are used to input data of the parameterization model (PM) of hourly UV-B irradiance. The PM of UV-B irradiance is based on the main parameters such as cloudiness, solar zenith angle, total ozone, opacity of aerosols, altitude, and surface albedo. The input data for the model requires daily total ozone, hourly amount and type of cloud, visibility and air pressure. To simplify cloud effects in the model, the constant cloud transmittance are used. For example, the correlation coefficient of the PM using these cloud transmissivities is shown high in more than 0.91 for cloudy days in Busan, and the relative mean bias error (RMBE) and the relative root mean square error (RRMSE) are less than 21% and 27%, respectively. In this study, the daily variations of calculated and predicted UV-B irradiance are presented in high correlation coefficients of more than 0.86 at each monitoring site of the Korean peninsula as well as East Asia. The RMBE is within 10% of the mean measured hourly irradiance, and the RRMSE is within 15% for hourly irradiance, respectively. Although errors are present in cloud amounts and total ozone, the results are still acceptable.

A Study on Model Improvement using Inherent Optical Properties for Remote Sensing of Cyanobacterial Bloom on Rivers in Korea (국내 수계의 남조류 원격모니터링을 위한 고유분광특성모델 개선 연구)

  • Ha, Rim;Nam, Gibeom;Park, Sanghyun;Shin, Hyunjoo;Lee, Hyuk;Kang, Taegu;Lee, Jaekwan
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.589-597
    • /
    • 2019
  • The purpose of this study was improve accuracy the IOPs inversion model(IOPs-IM) developed in 2016 for phycocyanin(PC) concentration estimation in the Nakdong River. Additionally, two optimum models were developed and evaluated with 2017 measurement field spectral data for the Geum River and the Yeongsan River. The used measurement data for IOPs-IM analyzation was randomly classified as training and verification materials at the ratio of 2:1 in all data sets. Using the training data set from 2015-2017, accuracy results of the IOPs-IM generally improved for the Nakdong River. The RMSE(Root Mean Square Error) decreased by 14 % compared to 2016. For the GeumRiver, the results of the IOPs-IM were suitable, except for some point results in 2016. Results of the IOPs-IM in the Yeongsan River followed the overall 1:1 line and MAE(Mean Absolute Error) was lower than other rivers. But the RMSE and MAE values were higher. As a result of applying the validation data to the IOPs-IM, the accuracy of the Nakdong River was reduced to RMSE 17.7 % and MRE 16.4 %, respectively compared with 2016. However, the MRE(Mean Relative Error) was estimated to be higher by 400 % in the Geum River, and the RMSE was more than 100 mg/㎥ of the Yeongsan River. Therefore, it is necessary to get the continuously data with various sections of each river for obtain objective and reliable results and the models should be improved.

Multi-step Ahead Link Travel Time Prediction using Data Fusion (데이터융합기술을 활용한 다주기 통행시간예측에 관한 연구)

  • Lee, Young-Ihn;Kim, Sung-Hyun;Yoon, Ji-Hyeon
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.4 s.82
    • /
    • pp.71-79
    • /
    • 2005
  • Existing arterial link travel time estimation methods relying on either aggregate point-based or individual section-based traffic data have their inherent limitations. This paper demonstrates the utility of data fusion for improving arterial link travel time estimation. If the data describe traffic conditions, an operator wants to know whether the situations are going better or worse. In addition, some traffic information providing strategies require predictions of what would be the values of traffic variables during the next time period. In such situations, it is necessary to use a prediction algorithm in order to extract the average trends in traffic data or make short-term predictions of the control variables. In this research. a multi-step ahead prediction algorithm using Data fusion was developed to predict a link travel time. The algorithm performance were tested in terms of performance measures such as MAE (Mean Absolute Error), MARE(mean absolute relative error), RMSE (Root Mean Square Error), EC(equality coefficient). The performance of the proposed algorithm was superior to the current one-step ahead prediction algorithm.

Comparative analysis of detonation velocity in determining product composition for high energetic molecules using stoichiometric rules (화학 양론적 규칙으로 고에너지 물질의 폭발 생성물 조성 결정에 따른 폭발속도 비교분석)

  • Kim, Hyun Jeong;Lee, Byung Hun;Cho, Soo Gyeong;Lee, Sung Kwang
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.405-410
    • /
    • 2017
  • High energetic materials (HEMs) have been used in fuels, civil engineering and architecture as well as military purposes such as explosives and propellants. The essential process for the development of new energetic compounds is to accurately calculate its detonation performances. The most typical equation for calculating the explosive performance is the Kamlet-Jacobs (K-J) equation. In the K-J equation, the parameter such as the number of moles of gaseous products at the explosion, the average molar mass of gas products, and the explosion heat greatly affect the explosion performance. These depend on the product composition for the detonation reaction. In this study, detonation products of 65 high energetic molecules (HEMs) were calculated from the various rules such as Kamlet-Jacobs, Kistiakowsky-Wilson, modified Kistiakowsky-Wilson, Springall-Roberts rules to calculate more accurate detonation velocity (Dv). In addition, they were applied to five kinds of detonation velocity equations proposed by K-J, Rothstein, Xiong, Stine and Keshavarz. The mean absolute error and root mean square error of HEMs were obtained from experimental and calculated velocity value for each method. The K-J and Xiong equation that is slightly complex showed a lower mean absolute error than the simple Rothstein and Keshavarz equation. When the mod-KW rule was applied to the Xiong equation, the detonation velocities were the most accurate. This study compared the various method of calculating the detonation velocity of HEMs to obtain accurate HEMs performance.

Retrieval of Land SurfaceTemperature based on High Resolution Landsat 8 Satellite Data (고해상도 Landsat 8 위성자료기반의 지표면 온도 산출)

  • Jee, Joon-Bum;Kim, Bu-Yo;Zo, Il-Sung;Lee, Kyu-Tae;Choi, Young-Jean
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.171-183
    • /
    • 2016
  • Land Surface Temperature (LST) retrieved from Landsat 8 measured from 2013 to 2014 and it is corrected by surface temperature observed from ground. LST maps are retrieved from Landsat 8 calculate using the linear regression function between raw Landsat 8 LST and ground surface temperature. Seasonal and annual LST maps developed an average LST from season to annual, respectively. While the higher LSTs distribute on the industrial and commercial area in urban, lower LSTs locate in surrounding rural, sea, river and high altitude mountain area over Seoul and surrounding area. In order to correct the LST, linear regression function calculate between Landsat 8 LST and ground surface temperature observed 3 Korea Meteorological Administration (KMA) synoptic stations (Seoul(ID: 108), Incheon(ID: 112) and Suwon(ID: 119)) on the Seoul and surrounding area. The slopes of regression function are 0.78 with all data and 0.88 with clear sky except 5 cloudy pixel data. And the original Landsat 8 LST have a correlation coefficient with 0.88 and Root Mean Square Error (RMSE) with $5.33^{\circ}C$. After LST correction, the LST have correlation coefficient with 0.98 and RMSE with $2.34^{\circ}C$ and the slope of regression equation improve the 0.95. Seasonal and annual LST maps represent from urban to rural area and from commercial to industrial region clearly. As a result, the Landsat 8 LST is more similar to the real state when corrected by surface temperature observed ground.

The GOCI-II Early Mission Marine Fog Detection Products: Optical Characteristics and Verification (천리안 해양위성 2호(GOCI-II) 임무 초기 해무 탐지 산출: 해무의 광학적 특성 및 초기 검증)

  • Kim, Minsang;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study analyzes the early satellite mission marine fog detection results from Geostationary Ocean Color Imager-II (GOCI-II). We investigate optical characteristics of the GOCI-II spectral bands for marine fog between October 2020 and March 2021 during the overlapping mission period of Geostationary Ocean Color Imager (GOCI) and GOCI-II. For Rayleigh-corrected reflection (Rrc) at 412 nm band available for the input of the GOCI-II marine fog algorithm, the inter-comparison between GOCI and GOCI-II data showed a small Root Mean Square Error (RMSE) value (0.01) with a high correlation coefficient (0.988). Another input variable, Normalized Localization Standard (NLSD), also shows a reasonable correlation (0.798) between the GOCI and GOCI-II data with a small RMSE value (0.007). We also found distinctive optical characteristics between marine fog and clouds by the GOCI-II observations, showing the narrower distribution of all bands' Rrc values centered at high values for cloud compared to marine fog. The GOCI-II marine fog detection distribution for actual cases is similar to the GOCI but more detailed due to the improved spatial resolution from 500 m to 250 m. The validation with the automated synoptic observing system (ASOS) visibility data confirms the initial reliability of the GOCI-II marine fog detection. Also, it is expected to improve the performance of the GOCI-II marine fog detection algorithm by adding sufficient samples to verify stable performance, improving the post-processing process by replacing real-time available cloud input data and reducing false alarm by adding aerosol information.

Evaluating Accuracy of Algorithms Providing Subsurface Properties Using Full-Reference Image Quality Assessment (완전 참조 이미지 품질 평가를 이용한 지하 매질 물성 정보 도출 알고리즘의 정확성 평가)

  • Choi, Seungpyo;Jun, Hyunggu;Shin, Sungryul;Chung, Wookeen
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.1
    • /
    • pp.6-19
    • /
    • 2021
  • Subsurface physical properties can be obtained and imaged by seismic exploration, and various algorithms have been developed for this purpose. In this regard, root mean square error (RMSE) has been widely used to quantitatively evaluate the accuracy of the developed algorithms. Although RMSE has the advantage of being numerically simple, it has limitations in assessing structural similarity. To supplement this, full-reference image quality assessment (FR-IQA) techniques, which reflect the human visual system, are being investigated. Therefore, we selected six FR-IQA techniques that could evaluate the obtained physical properties. In this paper, we used the full-waveform inversion, because the algorithm can provide the physical properties. The inversion results were applied to the six selected FR-IQA techniques using three benchmark models. Using salt models, it was confirmed that the inversion results were not satisfactory in some aspects, but the value of RMSE decreased. On the other hand, some FR-IQA techniques could definitely improve the evaluation.

Novel two-stage hybrid paradigm combining data pre-processing approaches to predict biochemical oxygen demand concentration (생물화학적 산소요구량 농도예측을 위하여 데이터 전처리 접근법을 결합한 새로운 이단계 하이브리드 패러다임)

  • Kim, Sungwon;Seo, Youngmin;Zakhrouf, Mousaab;Malik, Anurag
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1037-1051
    • /
    • 2021
  • Biochemical oxygen demand (BOD) concentration, one of important water quality indicators, is treated as the measuring item for the ecological chapter in lakes and rivers. This investigation employed novel two-stage hybrid paradigm (i.e., wavelet-based gated recurrent unit, wavelet-based generalized regression neural networks, and wavelet-based random forests) to predict BOD concentration in the Dosan and Hwangji stations, South Korea. These models were assessed with the corresponding independent models (i.e., gated recurrent unit, generalized regression neural networks, and random forests). Diverse water quality and quantity indicators were implemented for developing independent and two-stage hybrid models based on several input combinations (i.e., Divisions 1-5). The addressed models were evaluated using three statistical indices including the root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and correlation coefficient (CC). It can be found from results that the two-stage hybrid models cannot always enhance the predictive precision of independent models confidently. Results showed that the DWT-RF5 (RMSE = 0.108 mg/L) model provided more accurate prediction of BOD concentration compared to other optimal models in Dosan station, and the DWT-GRNN4 (RMSE = 0.132 mg/L) model was the best for predicting BOD concentration in Hwangji station, South Korea.