DOI QR코드

DOI QR Code

Retrieval of Land SurfaceTemperature based on High Resolution Landsat 8 Satellite Data

고해상도 Landsat 8 위성자료기반의 지표면 온도 산출

  • Jee, Joon-Bum (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Kim, Bu-Yo (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Zo, Il-Sung (Research Institute for Radiation-Satellite, Gangneung-Wonju National University) ;
  • Lee, Kyu-Tae (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Choi, Young-Jean (Weather Information Service Engine, Hankuk University of Foreign Studies)
  • 지준범 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 김부요 (강릉원주대학교 대기환경과학과) ;
  • 조일성 (강릉원주대학교 복사-위성연구소) ;
  • 이규태 (강릉원주대학교 대기환경과학과) ;
  • 최영진 (한국외국어대학교 차세대도시농림융합기상사업단)
  • Received : 2015.12.03
  • Accepted : 2016.01.13
  • Published : 2016.04.30

Abstract

Land Surface Temperature (LST) retrieved from Landsat 8 measured from 2013 to 2014 and it is corrected by surface temperature observed from ground. LST maps are retrieved from Landsat 8 calculate using the linear regression function between raw Landsat 8 LST and ground surface temperature. Seasonal and annual LST maps developed an average LST from season to annual, respectively. While the higher LSTs distribute on the industrial and commercial area in urban, lower LSTs locate in surrounding rural, sea, river and high altitude mountain area over Seoul and surrounding area. In order to correct the LST, linear regression function calculate between Landsat 8 LST and ground surface temperature observed 3 Korea Meteorological Administration (KMA) synoptic stations (Seoul(ID: 108), Incheon(ID: 112) and Suwon(ID: 119)) on the Seoul and surrounding area. The slopes of regression function are 0.78 with all data and 0.88 with clear sky except 5 cloudy pixel data. And the original Landsat 8 LST have a correlation coefficient with 0.88 and Root Mean Square Error (RMSE) with $5.33^{\circ}C$. After LST correction, the LST have correlation coefficient with 0.98 and RMSE with $2.34^{\circ}C$ and the slope of regression equation improve the 0.95. Seasonal and annual LST maps represent from urban to rural area and from commercial to industrial region clearly. As a result, the Landsat 8 LST is more similar to the real state when corrected by surface temperature observed ground.

2013년부터 2014년까지 관측된 Landsat 8 위성자료로부터 지표면 온도를 산출하였고 산출된 지표면 온도는 지상에서 관측된 지표면 온도를 이용하여 보정하였다. 지표면 온도지도는 Landsat 8로부터 산출된 지표면 온도를 지상에서 관측된 지표면 온도와의 선형 회귀식을 이용하여 계산되었다. 계절과 년에 대한 지표면 온도는 각각 계절과 년에 대하여 사례들을 평균하여 계산되었다. 지표면 온도는 도시의 공업 또는 상업지역에서 높은 온도가 나타나는 반면, 서울주변의 높은 고도의 산악과 해양, 강 등에서 낮은 지표면 온도가 나타났다. 위성에서 산출된 지표면 온도를 보정하기 위하여 서울을 포함한 수도권지역에서 관측되는 기상청 종관측소 3개 지점 (서울(지점번호: 108), 인천(지점번호: 119), 수원(지점번호: 112))의 지표면 관측 자료를 이용하여 선형회귀방법을 적용하였다. Landsat 8의 지표면 온도는 모든 자료에서 기울기가 0.78이었고 5개의 흐린날을 제외한 맑은 상태의 자료에서 0.88이었다. 그리고 초기 지표면온도에서 상관계수는 0.88이었고 평방근 오차 (Root Mean Sqare Error (RMSE))는 $5.33^{\circ}C$이었다. 지표면 온도 보정이후에는 상관계수는 0.98 그리고 RMSE는 $2.34^{\circ}C$이었으며 회귀식의 기울기는 0.95로 개선되었다. 계절 및 년 지표면 온도는 상업지역과 공업지역 그리고 도시와 주변지역을 잘 표현하였다. 결과적으로 지상에서 관측된 지표면 온도를 이용하여 위성에서 산출된 지표면온도를 보정하였을 때 실제 상태와 유사한 분포를 보였다.

Keywords

References

  1. Ahn, J.S., J.D. Hwang, M.H. Park, and Y.S. Suh, 2012. Estimation of Urban Heat Island Potential Based on Land Cover Type in Busan Using Landsat-7 ETM+ and AWS Data. Journal of the Korean Association of Geographic Information Studies, 15(4): 65-77 (in Korean with English abstract). https://doi.org/10.11108/kagis.2012.15.4.065
  2. Choi, S.P. and I.T. Yang, 1998. Extraction of land surface change information by using Landsat TM images. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, 21(3): 261-267 (in Korean with English abstract).
  3. He, J.F., J.Y. Liu, D.F. Zhuang, W. Zhang, and M.L. Liu, 2007. Assessing the effect of land use/land cover change on the change of urban heat island intensity. Theoretical and Applied Climatology, 90(3): 217-226. https://doi.org/10.1007/s00704-006-0273-1
  4. Hollingsworth, B., L. Chen, S.E. Reichenbach, and R.R. Irish, 1996. Automated cloud cover assessment for Landsat TM images. Proceedings of SPIE-Imaging Spectrometry II. November 1996, 2819: 170-179.
  5. Jee, J.B. and Y.J. Choi, 2014. Conjugation of Landsat Data for Analysis of the Land Surface Properties in Capital Area. Journal of the Korean Earth Science Society, 35(1): 54-68 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2014.35.1.54
  6. Jee, J.B., K.T. Lee, and Y.J. Choi, 2014. Analysis of Land Surface Temperature from MODIS and Landsat Satellites using by AWS Temperature in Capital Area, Korean Journal of Remote Sensing, 30(2): 315-329 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.2.13
  7. Jeong, J.C., 2009. Comparison of land surface temperatures derived from surface emissivity with urban heat island effect. Journal of Environmental Impact Assessment, 18(4): 219-277 (in Korean with English abstract).
  8. Jin, M. and S. Liang, 2006: An Improved Land Surface Emissivity Parameter for Land Surface Models Using Global Remote Sensing Observations, Journal of Climate, 19(12): 2867-2881. https://doi.org/10.1175/JCLI3720.1
  9. Jo, M.H., K.J. Lee, and W.S. Kim, 2001. A study on the spatial distribution characteristic of urban surface temperature using remotely sensed data and GIS. Journal of the Korean Association of Geographic Information Studies, 4(1): 57-66 (in Korean with English abstract).
  10. Karnieli, A., 2010. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of Climate, 23(3): 618-633. https://doi.org/10.1175/2009JCLI2900.1
  11. Kim, Y.J. and Y.E. Choi, 2012. A Study on the Intensity of Urban Heat Islands in the Seoul Metropolitan Area by Weather Conditions. The Geographical Journal of Korea, 46(1): 1-9 (in Korean with English abstract).
  12. Kim, J.I. and J.H. Kwon, 2005. Identifying urban spatial structure through GIS and Remote Sensing data: The case of Daegu Metropolitan Area. The Korean Association of Geographic Information Studies, 12(4): 44-51 (in Korean with English abstract).
  13. Kim, B.S. and H.H. Kwon, 2011, Status and Future Prospects of Abnormal Climate after 2010 on the Korean peninsula, Journal of disaster prevention, 3(1) : 4-15 (in Korean with Korean abstract).
  14. Kim, T.G., K.E. Kim, K.S. Jo, and K.H. Kim, 1996. Monitoring of lake water quality using LANDSAT TM imagery data. Journal of the Korean Society for Geo-Spatial Information System, 4(2): 23-33 (in Korean with English abstract).
  15. KMA, 2002. Guidance of Surface Meteorological Observation, p.151 (in Korean)
  16. Koo, H.J., Y.H. Kim, and B.C. Choi, 2007. A Study on the Change of the Urban Heat Island Structure in Seoul. Journal of Climate Research, 2(2): 67-78 (in Korean with English abstract).
  17. Landsberg, H.E., 1981. The Urban Climate. Academic press, New York, USA, p.275.
  18. Lee, J.Y., D.Y. Yang, J.Y. Kim, and G.S. Chung, 2004a. Application of Landsat ETM image indices to classify the wildfire area of Gangneung, Gangweon province, Korea. Journal of Korean Earth Science Society, 25(8): 754-763 (in Korean with English abstract).
  19. Lee, J.Y., D.Y. Yang, J.Y. Kim, and G.S. Chung, 2004b. Application of Landsat ETM image to estimate the distribution of soil types and erosional pattern in the wildfire area of Gangneung, Gangweon province, Korea. Journal of Korean Earth Science Society, 25(8): 764-773 (in Korean with English abstract).
  20. Lee, S., Y.S. Bae, and H.S. Kim, 2011. The Study and Analysis of Extreme Weather in Seoul, Seoul Studies, 12(2): 1-17 (in Korean).
  21. Mallick, J., Y. Kant, and B.D. Bharath, 2008. Estimation of land surface temperature over Delhi using Landsat-7 ETM+. Journal Indian Geophysical Union, 12(7): 131-140.
  22. Matthew, M., L. Allen, T. Zelalem, W. Brian, and R. Dennis, 2014. Radiometric calibration methodology of the Landsat 8 Thermal Infrared Sensor. Remote Sensing 6(9): 8803-8821. https://doi.org/10.3390/rs6098803
  23. NASA, 2008. Landsat-7 Science Data Users Handbook, 184, http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf.
  24. USGS, 2015. LANDSAT 8(L8) Data Users Handbook. Department of the Interior US Geological Survey, LSDS-1574 Version 1.0, 105.
  25. Steve, K.J., N.H. Wong, H. Emlyn, A. Roni, and Y. Hong, 2007. The influence of land use on the urban heat island in Singapore. Habitat International, 31(1): 232-242. https://doi.org/10.1016/j.habitatint.2007.02.006
  26. Suga, Y., H. Ogawa, K. Ohno, and K. Yamada, 2003. Detection of surface temperature from Landsat-7/ETM+. Advances in Space Research, 32(11): 2235-2240. https://doi.org/10.1016/S0273-1177(03)90548-5
  27. Voogt, J.A. and T.R. Oke, 2003. Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3): 370-384. https://doi.org/10.1016/S0034-4257(03)00079-8
  28. Yoo, B.M., 1999. Introduction to geospatial information. DongMyung, Seoul, Korea, p.511 (in Korean).

Cited by

  1. WUDAPT Protocol을 활용한 Local Climate Zone 분류 - 서울특별시를 사례로 - vol.45, pp.4, 2016, https://doi.org/10.9715/kila.2017.45.4.131
  2. 유휴지를 활용한 최적의 도시 녹지 공간 탐색 - 녹지연결성과 열 환경 개선을 목적으로 - vol.22, pp.5, 2019, https://doi.org/10.13087/kosert.2019.22.5.45
  3. 도시 열환경 분석을 위한 공간정보 빅데이터 구축 vol.36, pp.5, 2016, https://doi.org/10.5659/jaik_pd.2020.36.5.53
  4. Landsat 8 영상을 이용한 심층신경망 기반의 지표면온도 산출 vol.36, pp.3, 2016, https://doi.org/10.7780/kjrs.2020.36.3.8