DOI QR코드

DOI QR Code

Evaluating Accuracy of Algorithms Providing Subsurface Properties Using Full-Reference Image Quality Assessment

완전 참조 이미지 품질 평가를 이용한 지하 매질 물성 정보 도출 알고리즘의 정확성 평가

  • Choi, Seungpyo (Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Jun, Hyunggu (Marine Active Fault Research Unit, Korea Institute of Ocean Science and Technology) ;
  • Shin, Sungryul (Department of Energy Resources Engineering, Korea Maritime and Ocean University) ;
  • Chung, Wookeen (Department of Energy Resources Engineering, Korea Maritime and Ocean University)
  • 최승표 (한국해양대학교 해양과학기술융합학과) ;
  • 전형구 (한국해양과학기술원 해저활성단층연구단) ;
  • 신성렬 (한국해양대학교 에너지자원공학과) ;
  • 정우근 (한국해양대학교 에너지자원공학과)
  • Received : 2021.02.01
  • Accepted : 2021.02.24
  • Published : 2021.02.28

Abstract

Subsurface physical properties can be obtained and imaged by seismic exploration, and various algorithms have been developed for this purpose. In this regard, root mean square error (RMSE) has been widely used to quantitatively evaluate the accuracy of the developed algorithms. Although RMSE has the advantage of being numerically simple, it has limitations in assessing structural similarity. To supplement this, full-reference image quality assessment (FR-IQA) techniques, which reflect the human visual system, are being investigated. Therefore, we selected six FR-IQA techniques that could evaluate the obtained physical properties. In this paper, we used the full-waveform inversion, because the algorithm can provide the physical properties. The inversion results were applied to the six selected FR-IQA techniques using three benchmark models. Using salt models, it was confirmed that the inversion results were not satisfactory in some aspects, but the value of RMSE decreased. On the other hand, some FR-IQA techniques could definitely improve the evaluation.

탄성파 탐사는 속도와 밀도 같은 지하 매질 물성 정보를 파악하고 지하 지층 구조를 영상화 할 수 있으며, 이를 위한 다양한 알고리즘 개발이 이루어지고 있다. 이러한 알고리즘의 성능 검증을 위해 다양한 기준 모델이 사용되며, 정확도의 경우 참 물성 데이터와의 평균 제곱근 오차(Root Mean Squre Error, RMSE)를 통해 정량적으로 평가할 수 있다. RMSE는 수치적으로 단순하다는 장점이 있지만 구조적인 품질과의 상관도가 높지 않다는 한계가 있다. 이러한 한계를 보완하기 위해 인간지각시스템을 반영한 FR-IQA (Full Reference Image Quality Assessment) 기법이 연구되고 있으며, 지하 물성 정보 데이터를 다룰 수 있는 FR-IQA 기법들을 선정하였다. 본 연구는 물성 정보 도출 알고리즘으로 완전 파형 역산을 선정하여 세 가지 기준 모델에서 수치예제 실험을 진행하였으며, 선정 된 FR-IQA 기법들을 이용하여 물성 정보 도출 알고리즘 정확성 평가를 수행하였다. 주요 구조 정확성 평가 시 암염모델 하부 구조의 경우 구조적으로 좋지 않음을 육안으로 확인할 수 있었으나 RMSE 값은 감소하며 결과의 부정확성을 표출하지 못하였다. 반면, 몇몇 FR-IQA의 경우 결과의 부정확성을 수치적으로 표출하는 것을 확인하였다.

Keywords

References

  1. Aminzadeh, F., Burkhard, N., Nicoletis, L., Rocca, F., and Wyatt, K. 1994, SEG/EAEG 3-D modeling project: 2nd update, The Leading Edge, 13(9), 949-952, doi:10.1190/1.1437054.
  2. Baysal, E., Kosloff, D. D., and Sherwood, J. W., 1983, Reverse time migration, Geophysics, 48(11), 1514-1524, doi:10.1190/1.1441434.
  3. Berryman, J. G., 1991, Lecture notes on nonlinear inversion and tomography: 1, Borehole seismic tomography, Lawrence Livermore National, No. UCRL-LR-105358-Rev. 1.
  4. Bording, R. P., Gersztenkorn, A., Lines, L. R., Scales, J. A., and Treitel, S., 1987, Applications of seismic travel-time tomography, Geophys. J. Int., 90(2), 285-303, doi:10.1111/j.1365-246X.1987.tb00728.x.
  5. Brossier, R., Operto, S., and Virieux, J. 2009, Seismic imaging of complex onshore structures by 2D elastic frequencydomain full-waveform inversion, Geophysics, 74, WCC105-WCC118, doi:10.1190/1.3215771.
  6. Chang, W. F., and McMechan, G. A., 1987, Elastic reverse-time migration, Geophysics, 52(10), 1365-1375, doi:10.1190/1.1442249.
  7. Cohen, J. K., and Stockwell Jr, J. W. 2000, CWP/SU: Seismic Unix Release 35: an open source software package for seismic research and processing, Center for Wave Phenomenon, Colorado School of Mines.
  8. Eckert, M. P., and Bradley, A. P., 1998, Perceptual quality metrics applied to still image compression, Signal processing, 70(3), 177-200, doi:10.1016/S0165-1684(98)00124-8.
  9. Girod B., 1993, What's wrong with mean-squared error?, Digital images and human vision, 207-220.
  10. Hore, A., and Ziou, D., 2010, Image quality metrics: PSNR vs. SSIM, In 2010 20th international conference on pattern recognition, 2366-2369, doi:10.1109/ICPR.2010.579.
  11. Jun, H. G., Park, E. J., and Shin, C. S., 2015, Weighted pseudo-Hessian for frequency-domain elastic full waveform inversion, J. Appl. Geophy., 123, 1-17, doi:10.1016/j.jappgeo.2015.09.014.
  12. Kim, S. Y., Chung, W. K., and Shin, S. R., 2019, Acoustic Fullwaveform Inversion using Adam Optimizer, Geophys. and Geophys. Explor., 22(4), 202-209 (in Korean with English abstract), doi:10.7582/GGE.2019.22.4.202.
  13. Kwak, N. E., Min, D. J., and Bae, H. S., 2011, Reverse-time Migration for VTI and TTI Media, Geophys. and Geophys. Explor., 14(3), 191-202 (in Korean with English abstract), doi:10.7582/GGE.2011.14.3.191.
  14. Lailly, P., and Bednar, J., 1983, The seismic inverse problem as a sequence of before stack migration, Conference on inverse Scattering: Theory and Application, SIAM J. Appl. Math., 206-220.
  15. Larson, E. C., and Chandler, D. M., 2010, Most apparent distortion: full-reference image quality assessment and the role of strategy, J. Electron. Imaging., 19(1), 011006-1-21, doi:10.1117/1.3267105.
  16. Lee, D. S., 2009, A case study on the cross-well travel-time tomography regulated by the error in the measurement of the first arrival time, Geophys. and Geophys. Explor., 12(3), 233-238 (in Korean with English abstract).
  17. Lee, D. S., 2011, A Study on the Static Correction for the First Arrival Travel-time of the Cross-well Seismic Data, Geophys. and Geophys. Explor., 14(2), 146-151 (in Korean with English abstract), doi:10.7582/GGE.2011.14.2.146.
  18. Liu, A., Lin, W., and Narwaria, M. 2011, Image quality assessment based on gradient similarity, IEEE Trans. Image Process., 21(4), 1500-1512, doi:10.1109/TIP.2011.2175935.
  19. Martin, G. S., Wiley, R., and Marfurt, K. J., 2006, Marmousi2: An elastic upgrade for marmousi, The leading edge, 20(2), 156-166, doi:10.1190/1.2172306.
  20. Mittal, A., Moorthy, A. K., and Bovik, A. C. 2012, Noreference image quality assessment in the spatial domain, IEEE Trans. Image Process., 21(12), 4695-4708, doi:10.1109/TIP.2012.2214050.
  21. Moorthy, A. K., and Bovik, A. C., 2011, Blind image quality assessment: From natural scene statistics to perceptual quality, IEEE Trans. Image Process., 20(12), 3350-3364, doi:10.1109/TIP.2011.2147325.
  22. Mora, P., 1987, Nonlinear two-dimensional elastic inversion of multioffset seismic data, Geophysics, 52(9), 1211-1228, doi: 10.1190/1.1442384.
  23. No, S. Y., Ahn, S. W., and Chong, J. W., 2012, Histogram of Gradient based Efficient Image Quality Assessment, Journal of IKEEE, 16(3), 182-188 (in Korean with English abstract), doi:10.7471/ikeee.2012.16.3.182.
  24. Pratt, R. G., 1990, Inverse theory applied to multi-source crosshole tomography. Part 2: elastic wave-equation method, Geophys. Prospect, 38(3), 311-329, doi:10.1111/j.1365-2478.1990.tb01847.x.
  25. Pratt, R. G., Shin, C., and Hick, G. J., 1998, Gauss-newton and full newton method in frequency-space seismic waveform inversion, Geophys. J. Int., 133(2), 341-362. https://doi.org/10.1046/j.1365-246X.1998.00498.x
  26. Reisenhofer, R., Bosse, S., Kutyniok, G., and Wiegand, T., 2018, A Haar wavelet-based perceptual similarity index for image quality assessment, Signal Process. Image Commun., 61, 33-43, doi:10.1016/j.image.2017.11.001.
  27. Ren, Y., Sun, L., Wu, G., and Huang, W., 2017, DIBR-synthesized image quality assessment based on local entropy analysis, In 2017 International Conference on the Frontiers and Advances in Data Science, 86-90, doi:10.1109/FADS.2017.8253200.
  28. Sheikh, H. R., and Bovik, A. C., 2006, Image information and visual quality, IEEE Trans. Image Process., 15(2), 430-444, doi:10.1109/TIP.2005.859378.
  29. Tao, D., Li, X., Lu, W., and Gao, X., 2009, Reduced-reference IQA in contourlet domain, IEEE Trans. Syst. Man Cybern. B Cybern., 39(6), 1623-1627, doi:10.1109/TSMCB.2009.2021951.
  30. Tarantola, A., 1986, A strategy for nonlinear elastic inversion of seismic reflection data, Geophysics, 51(10), 1893-1903, doi: 10.1190/1.1442046.
  31. Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics, Geophysics, 74(6), WCC1-WCC26, doi:10.1190/1.3238367.
  32. Wang Z., Bovik, A. C., and Lu, L., 2002, Why is image quality assessment so difficult, IEEE International Conference on Acoustics, Speech, and Signal Processing, 4, 3313-3316, doi: 10.1109/ICASSP.2002.5745362.
  33. Wang, Z., Simoncelli, E. P., and Bovik, A. C., 2003, Multiscale structural similarity for image quality assessment, In The Thrity-Seventh Asilomar Conference on Signals, Systems and Computers, 2, 1398-1402, doi:10.1109/ACSSC.2003.1292216.
  34. Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P., 2004, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13(4), 600-612, doi:10.1109/TIP.2003.819861.
  35. Wang, Z., and Bovik, A. C., 2009, Mean squared error: Love it or leave it? A new look at signal fidelity measures, IEEE Signal Process. Mag., 26(1), 98-117, doi:10.1109/MSP.2008.930649.
  36. Wang, Z., and Li, Q. 2010, Information content weighting for perceptual image quality assessment. IEEE Trans. Image Process., 20(5), 1185-1198, doi:10.1109/TIP.2010.2092435.
  37. Xue, W., Zhang, L., Mou, X., and Bovik, A. C., 2013, Gradient magnitude similarity deviation: A highly efficient perceptual image quality index, IEEE Trans. Image Process., 23(2), 684-695, doi:10.1109/TIP.2013.2293423.
  38. Yilmaz, O., 2001, Seismic data analysis: Processing, inversion, and interpretation of seismic data, Society of Exploration Geophysicists, doi:10.1190/1.9781560801580.
  39. Zhang, L., Zhang, L., Mou, X., and Zhang, D., 2011, FSIM: A feature similarity index for image quality assessment, IEEE Trans. Image Process., 20(8), 2378-2386, doi:10.1109/TIP.2011.2109730.