• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.032 seconds

Kinetic Behavior of Escherichia coli on Various Cheeses under Constant and Dynamic Temperature

  • Kim, K.;Lee, H.;Gwak, E.;Yoon, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.1013-1018
    • /
    • 2014
  • In this study, we developed kinetic models to predict the growth of pathogenic Escherichia coli on cheeses during storage at constant and changing temperatures. A five-strain mixture of pathogenic E. coli was inoculated onto natural cheeses (Brie and Camembert) and processed cheeses (sliced Mozzarella and sliced Cheddar) at 3 to 4 log CFU/g. The inoculated cheeses were stored at 4, 10, 15, 25, and $30^{\circ}C$ for 1 to 320 h, with a different storage time being used for each temperature. Total bacteria and E. coli cells were enumerated on tryptic soy agar and MacConkey sorbitol agar, respectively. E. coli growth data were fitted to the Baranyi model to calculate the maximum specific growth rate (${\mu}_{max}$; log CFU/g/h), lag phase duration (LPD; h), lower asymptote (log CFU/g), and upper asymptote (log CFU/g). The kinetic parameters were then analyzed as a function of storage temperature, using the square root model, polynomial equation, and linear equation. A dynamic model was also developed for varying temperature. The model performance was evaluated against observed data, and the root mean square error (RMSE) was calculated. At $4^{\circ}C$, E. coli cell growth was not observed on any cheese. However, E. coli growth was observed at $10{\circ}C$ to $30^{\circ}C$C with a ${\mu}_{max}$ of 0.01 to 1.03 log CFU/g/h, depending on the cheese. The ${\mu}_{max}$ values increased as temperature increased, while LPD values decreased, and ${\mu}_{max}$ and LPD values were different among the four types of cheese. The developed models showed adequate performance (RMSE = 0.176-0.337), indicating that these models should be useful for describing the growth kinetics of E. coli on various cheeses.

Calculation of Surface Broadband Emissivity by Multiple Linear Regression Model (다중선형회귀모형에 의한 지표면 광대역 방출율 산출)

  • Jo, Eun-Su;Lee, Kyu-Tae;Jung, Hyun-Seok;Kim, Bu-Yo;Zo, Il-Sung
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.269-282
    • /
    • 2017
  • In this study, the surface broadband emissivity ($3.0-14.0{\mu}m$) was calculated using the multiple linear regression model with narrow bands (channels 29, 30, and 31) emissivity data of the Moderate Resolution Imaging Spectroradiometer (MODIS) on Earth Observing System Terra satellite. The 307 types of spectral emissivity data (123 soil types, 32 vegetation types, 19 types of water bodies, 43 manmade materials, and 90 rock) with MODIS University of California Santa Barbara emissivity library and Advanced Spaceborne Thermal Emission & Reflection Radiometer spectral library were used as the spectral emissivity data for the derivation and verification of the multiple linear regression model. The derived determination coefficient ($R^2$) of multiple linear regression model had a high value of 0.95 (p<0.001) and the root mean square error between these model calculated and theoretical broadband emissivities was 0.0070. The surface broadband emissivity from our multiple linear regression model was comparable with that by Wang et al. (2005). The root mean square error between surface broadband emissivities calculated by models in this study and by Wang et al. (2005) during January was 0.0054 in Asia, Africa, and Oceania regions. The minimum and maximum differences of surface broadband emissivities between two model results were 0.0027 and 0.0067 respectively. The similar statistical results were also derived for August. The surface broadband emissivities by our multiple linear regression model could thus be acceptable. However, the various regression models according to different land covers need be applied for the more accurate calculation of the surface broadband emissivities.

Registration of Three-Dimensional Point Clouds Based on Quaternions Using Linear Features (선형을 이용한 쿼터니언 기반의 3차원 점군 데이터 등록)

  • Kim, Eui Myoung;Seo, Hong Deok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.175-185
    • /
    • 2020
  • Three-dimensional registration is a process of matching data with or without a coordinate system to a reference coordinate system, which is used in various fields such as the absolute orientation of photogrammetry and data combining for producing precise road maps. Three-dimensional registration is divided into a method using points and a method using linear features. In the case of using points, it is difficult to find the same conjugate point when having different spatial resolutions. On the other hand, the use of linear feature has the advantage that the three-dimensional registration is possible by using not only the case where the spatial resolution is different but also the conjugate linear feature that is not the same starting point and ending point in point cloud type data. In this study, we proposed a method to determine the scale and the three-dimensional translation after determining the three-dimensional rotation angle between two data using quaternion to perform three-dimensional registration using linear features. For the verification of the proposed method, three-dimensional registration was performed using the linear features constructed an indoor and the linear features acquired through the terrestrial mobile mapping system in an outdoor environment. The experimental results showed that the mean square root error was 0.001054m and 0.000936m, respectively, when the scale was fixed and if not fixed, using indoor data. The results of the three-dimensional transformation in the 500m section using outdoor data showed that the mean square root error was 0.09412m when the six linear features were used, and the accuracy for producing precision maps was satisfied. In addition, in the experiment where the number of linear features was changed, it was found that nine linear features were sufficient for high-precision 3D transformation through almost no change in the root mean square error even when nine linear features or more linear features were used.

Analysis of Hydrologic Behavior Including Agricultural Reservoir Operation using SWAT Model (농업용 저수지 운영을 고려한 SWAT 모형의 수문학적 거동 분석)

  • Lee, Yong-Jun;Park, Min-Ji;Park, Ki-Wook;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.20-30
    • /
    • 2008
  • This study is to analyse the hydrological behavior of agricultural reservoir using SWAT model. For the upsteam watershed of Gongdo water level gauge station in Anseongcheon watershed, the streamflows at 2 reservoir (Gosam and Geumgwang) locations and Gongdo station were simulated with reservoir inclusion and exclusion. The daily water surface area and storage have been calculated considering the stage-storage curve function of the reservoir. Afterwards, the reservoir operation module in SWAT was modified from original module in SWAT for daily reservoir discharge simulated by water balance equation. Model validation results were Nash-Sutcliffe model efficiency coefficients value of 0.55, root mean square error value of 2.33 mm/day. On the other hand, the simulation results of two reservoir exclusion were Nash-Sutcliffe model efficiency coefficients value of 0.37, root mean square error value of 2.91 mm/day. The difference of Nash-Sutcliffe model efficiency coefficients between the simulation results of two reservoir inclusion and exclusion at Gongdo station was 0.18. This is caused by the storage and release operation of agricultural reservoirs for the runoff occurred at 2 reservoir watersheds.

  • PDF

Evaluating Spectral Preprocessing Methods for Visible and Near Infrared Reflectance Spectroscopy to Predict Soil Carbon and Nitrogen in Mountainous Areas (산지토양의 탄소와 질소 예측을 위한 가시 근적외선 분광반사특성 분석의 전처리 방법 비교)

  • Jeong, Gwanyong
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.4
    • /
    • pp.509-523
    • /
    • 2016
  • The soil prediction can provide quantitative soil information for sustainable mountainous ecosystem management. Visible near infrared spectroscopy, one of soil prediction methods, has been applied to predict several soil properties with effective costs, rapid and nondesctructive analysis, and satisfactory accuracy. Spectral preprocessing is a essential procedure to correct noisy spectra for visible near infrared spectroscopy. However, there are no attempts to evaluate various spectral preprocessing methods. We tested 5 different pretreatments, namely continuum removal, Savitzky-Golay filter, discrete wavelet transform, 1st derivative, and 2nd derivative to predict soil carbon(C) and nitrogen(N). Partial least squares regression was used for the prediction method. The total of 153 soil samples was split into 122 samples for calibration and 31 samples for validation. In the all range, absorption was increased with increasing C contents. Specifically, the visible region (650nm and 700nm) showed high values of the correlation coefficient with soil C and N contents. For spectral preprocessing methods, continuum removal had the highest prediction accuracy(Root Mean Square Error) for C(9.53mg/g) and N(0.79mg/g). Therefore, continuum removal was selected as the best preprocessing method. Additionally, there were no distinct differences between Savitzky-Golay filter and discrete wavelet transform for visual assessment and the methods showed similar validation results. According to the results, we also recommended Savitzky-Golay filter that is a simple pre-treatment with continuum removal.

  • PDF

Estimation of Drought Rainfall by Regional Frequency Analysis Using L and LH-Moments (II) - On the method of LH-moments - (L 및 LH-모멘트법과 지역빈도분석에 의한 가뭄우량의 추정 (II)- LH-모멘트법을 중심으로 -)

  • Lee, Soon-Hyuk;Yoon , Seong-Soo;Maeng , Sung-Jin;Ryoo , Kyong-Sik;Joo , Ho-Kil;Park , Jin-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.27-39
    • /
    • 2004
  • In the first part of this study, five homogeneous regions in view of topographical and geographically homogeneous aspects except Jeju and Ulreung islands in Korea were accomplished by K-means clustering method. A total of 57 rain gauges were used for the regional frequency analysis with minimum rainfall series for the consecutive durations. Generalized Extreme Value distribution was confirmed as an optimal one among applied distributions. Drought rainfalls following the return periods were estimated by at-site and regional frequency analysis using L-moments method. It was confirmed that the design drought rainfalls estimated by the regional frequency analysis were shown to be more appropriate than those by the at-site frequency analysis. In the second part of this study, LH-moment ratio diagram and the Kolmogorov-Smirnov test on the Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) distributions were accomplished to get optimal probability distribution. Design drought rainfalls were estimated by both at-site and regional frequency analysis using LH-moments and GEV distribution, which was confirmed as an optimal one among applied distributions. Design rainfalls were estimated by at-site and regional frequency analysis using LH-moments, the observed and simulated data resulted from Monte Carlotechniques. Design drought rainfalls derived by regional frequency analysis using L1, L2, L3 and L4-moments (LH-moments) method have shown higher reliability than those of at-site frequency analysis in view of RRMSE (Relative Root-Mean-Square Error), RBIAS (Relative Bias) and RR (Relative Reduction) for the estimated design drought rainfalls. Relative efficiency were calculated for the judgment of relative merits and demerits for the design drought rainfalls derived by regional frequency analysis using L-moments and L1, L2, L3 and L4-moments applied in the first report and second report of this study, respectively. Consequently, design drought rainfalls derived by regional frequency analysis using L-moments were shown as more reliable than those using LH-moments. Finally, design drought rainfalls for the classified five homogeneous regions following the various consecutive durations were derived by regional frequency analysis using L-moments, which was confirmed as a more reliable method through this study. Maps for the design drought rainfalls for the classified five homogeneous regions following the various consecutive durations were accomplished by the method of inverse distance weight and Arc-View, which is one of GIS techniques.

A screening of Alzheimer's disease using basis synthesis by singular value decomposition from Raman spectra of platelet (혈소판 라만 스펙트럼에서 특이값 분해에 의한 기저 합성을 통한 알츠하이머병 검출)

  • Park, Aaron;Baek, Sung-June
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2393-2399
    • /
    • 2013
  • In this paper, we proposed a method to screening of Alzheimer's disease (AD) from Raman spectra of platelet with synthesis of basis spectra using singular value decomposition (SVD). Raman spectra of platelet from AD transgenic mice are preprocessed with denoising, removal background and normalization method. The column vectors of each data matrix consist of Raman spectrum of AD and normal (NR). The matrix is factorized using SVD algorithm and then the basis spectra of AD and NR are determined by 12 column vectors of each matrix. The classification process is completed by select the class that minimized the root-mean-square error between the validation spectrum and the linear synthesized spectrum of the basis spectra. According to the experiments involving 278 Raman spectra, the proposed method gave about 97.6% classification rate, which is better performance about 6.1% than multi-layer perceptron (MLP) with extracted features using principle components analysis (PCA). The results show that the basis spectra using SVD is well suited for the diagnosis of AD by Raman spectra from platelet.

Turbid water atmospheric correction for GOCI: Modification of MUMM algorithm (GOCI영상의 탁한 해역 대기보정: MUMM 알고리즘 개선)

  • Lee, Boram;Ahn, Jae Hyun;Park, Young-Je;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.173-182
    • /
    • 2013
  • The early Sea-viewing Wide Field-of-view Sensor(SeaWiFS) atmospheric correction algorithm which is the basis of the atmospheric correction algorithm for Geostationary Ocean Color Imager(GOCI) assumes that water-leaving radiances is negligible at near-infrared(NIR) wavelengths. For this reason, all of the satellite measured radiances at the NIR wavelengths are assigned to aerosol radiances. However that assumption would cause underestimation of water-leaving radiances if it were applied to turbid Case-2 waters. To overcome this problem, Management Unit of the North Sea Mathematical Models(MUMM) atmospheric correction algorithm has been developed for turbid waters. This MUMM algorithm introduces new parameter ${\alpha}$, representing the ratio of water-leaving reflectance at the NIR wavelengths. ${\alpha}$ is calculated by statistical method and is assumed to be constant throughout the study area. Using this algorithm, we can obtain comparatively accurate water-leaving radiances in the moderately turbid waters where the NIR water-leaving reflectance is less than approximately 0.01. However, this algorithm still underestimates the water-leaving radiances at the extremely turbid water since the ratio of water-leaving radiance at two NIR wavelengths, ${\alpha}$ is changed with concentration of suspended particles. In this study, we modified the MUMM algorithm to calculate appropriate value for ${\alpha}$ using an iterative technique. As a result, the accuracy of water-leaving reflectance has been significantly improved. Specifically, the results show that the Root Mean Square Error(RMSE) of the modified MUMM algorithm was 0.002 while that of the MUMM algorithm was 0.0048.

Urban Area Building Reconstruction Using High Resolution SAR Image (고해상도 SAR 영상을 이용한 도심지 건물 재구성)

  • Kang, Ah-Reum;Lee, Seung-Kuk;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.361-373
    • /
    • 2013
  • The monitoring of urban area, target detection and building reconstruction have been actively studied and investigated since high resolution X-band SAR images could be acquired by airborne and/or satellite SAR systems. This paper describes an efficient approach to reconstruct artificial structures (e.g. apartment, building and house) in urban area using high resolution X-band SAR images. Building footprint was first extracted from 1:25,000 digital topographic map and then a corner line of building was detected by an automatic detecting algorithm. With SAR amplitude images, an initial building height was calculated by the length of layover estimated using KS-test (Kolmogorov-Smirnov test) from the corner line. The interferometric SAR phases were simulated depending on SAR geometry and changable building heights ranging from -10 m to +10 m of the initial building height. With an interferogram from real SAR data set, the simulation results were compared using the method of the phase consistency. One of results can be finally defined as the reconstructed building height. The developed algorithm was applied to repeat-pass TerraSAR-X spotlight mode data set over an apartment complex in Daejeon city, Korea. The final building heights were validated against reference heights extracted from LiDAR DSM, with an RMSE (Root Mean Square Error) of about 1~2m.

Development of Respiratory Training System Using Individual Characteristic Guiding Waveform (환자고유의 호흡 패턴을 적용한 호흡 연습장치 개발 및 유용성 평가)

  • Kang, Seong-Hee;Yoon, Jai-Woong;Kim, Tae-Ho;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • The purpose of this study was to develop the respiratory training system using individual characteristic guiding waveform to reduce the impact of respiratory motion that causes artifact in radiotherapy. In order to evaluate the improvement of respiratory regularity, 5 volunteers were included and their respiratory signals were acquired using the in-house developed belt-type sensor. Respiratory training system needs 10 free breathing cycles of each volunteer to make individual characteristic guiding waveform based on Fourier series and it guides patient's next breathing. For each volunteer, free breathing and guided breathing which uses individual characteristic guiding waveform were performed to acquire the respiratory cycles for 3 min. The root mean square error (RMSE) was computed to analyze improvement of respiratory regularity in period and displacement. It was found that respiratory regularity was improved by using respiratory training system. RMSE of guided breathing decreased up to 40% in displacement and 76% in period compared with free breathing. In conclusion, since the guiding waveform was easy to follow for the volunteers, the respiratory regularity was significantly improved by using in-house developed respiratory training system. So it would be helpful to improve accuracy and efficiency during 4D-RT, 4D-CT.