DOI QR코드

DOI QR Code

Calculation of Surface Broadband Emissivity by Multiple Linear Regression Model

다중선형회귀모형에 의한 지표면 광대역 방출율 산출

  • Jo, Eun-Su (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Lee, Kyu-Tae (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Jung, Hyun-Seok (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Kim, Bu-Yo (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Zo, Il-Sung (Research Institute for Radiation-Satellite, Gangneung-Wonju National University)
  • 조은수 (강릉원주대학교 대기환경과학과) ;
  • 이규태 (강릉원주대학교 대기환경과학과) ;
  • 정현석 (강릉원주대학교 대기환경과학과) ;
  • 김부요 (강릉원주대학교 대기환경과학과) ;
  • 조일성 (강릉원주대학교 복사위성연구소)
  • Received : 2017.04.04
  • Accepted : 2017.07.31
  • Published : 2017.08.30

Abstract

In this study, the surface broadband emissivity ($3.0-14.0{\mu}m$) was calculated using the multiple linear regression model with narrow bands (channels 29, 30, and 31) emissivity data of the Moderate Resolution Imaging Spectroradiometer (MODIS) on Earth Observing System Terra satellite. The 307 types of spectral emissivity data (123 soil types, 32 vegetation types, 19 types of water bodies, 43 manmade materials, and 90 rock) with MODIS University of California Santa Barbara emissivity library and Advanced Spaceborne Thermal Emission & Reflection Radiometer spectral library were used as the spectral emissivity data for the derivation and verification of the multiple linear regression model. The derived determination coefficient ($R^2$) of multiple linear regression model had a high value of 0.95 (p<0.001) and the root mean square error between these model calculated and theoretical broadband emissivities was 0.0070. The surface broadband emissivity from our multiple linear regression model was comparable with that by Wang et al. (2005). The root mean square error between surface broadband emissivities calculated by models in this study and by Wang et al. (2005) during January was 0.0054 in Asia, Africa, and Oceania regions. The minimum and maximum differences of surface broadband emissivities between two model results were 0.0027 and 0.0067 respectively. The similar statistical results were also derived for August. The surface broadband emissivities by our multiple linear regression model could thus be acceptable. However, the various regression models according to different land covers need be applied for the more accurate calculation of the surface broadband emissivities.

이 연구에서는 Earth Observing System Terra 위성에 탑재된 Moderate Resolution Imaging Spectroradiometer (MODIS) 협대역 방출율(채널 29, 30, 31) 자료와 다중선형회귀모형을 이용하여 지표면 광대역 방출율을 추정하였다. 다중선형회귀모형 도출 및 검증을 위한 분광 방출율 자료는 MODIS University of California, Santa Barbara와 Advanced Spaceborne Thermal Emission and Reflection Radiometer spectral library의 307종(토양 123종, 식생 32종, 물 19종, 인위적 재료 43종, 바위 90종)을 사용하였다. 도출된 다중선형회귀모형의 결정계수($R^2$)는 0.95 (p<.001)로 높게 나타났고 또한 이 모형 결과와 이론적 광대역 방출율 값의 평균제곱근오차(Root Mean Square Error)는 0.0070이었다. 그리고 이 연구 결과에 따라 계산된 지표면 광대역 방출율을 선행 연구 Wang et al. (2005)의 결과와 비교하였다. 그 결과 아시아, 아프리카, 오세아니아 지역에서 이 연구와 Wang et al. (2005)의 결과에 대한 1월 평균 지표면 광대역방출율의 평균제곱근오차는 0.0054이었고 최소와 최대 편차는 각각 0.0027과 0.0067이었으며 이러한 통계 값은 8월에도 유사하였다. 이 연구에서 다중선형회귀모형에 의하여 계산한 지표면 광대역 방출율은 Wang et al. (2005)의 값과 큰 차이가 없이 비교적 정확하게 산출되었으나 산출 정확성 향상을 위해서는 토지피복특성에 따른 차별화된 회귀모형 적용 필요성이 제기된다.

Keywords

References

  1. Astin, A.W. and Denson, N., 2009, Multi-Campus Studies of College Impact: Which Statistical Method is Appropriate?. Research in Higher Education, 50, 354-367. https://doi.org/10.1007/s11162-009-9121-3
  2. Asrar, G. and Greenstone, R., 1995, MTPE EOS REFERENCE HANDBOOK. NASA Goddard Space Flight Center, Greenbelt, 277 p.
  3. Baldridge, A.M., Hook, S.J., Grove, C.I., and Rivera, G., 2009, The ASTER spectral library version 2.0. Remote Sensing of Environment, 113, 711-715. https://doi.org/10.1016/j.rse.2008.11.007
  4. Choi, D.S., Kim, J.H., and Park, H., 2015, Derivation of Geostationary Satellite Based Background Temperature and Its Validation with Ground Observation and Geographic Information. Korean Journal of Remote Sensing, 31, 583-598. https://doi.org/10.7780/kjrs.2015.31.6.8
  5. Huete, A., Justice, C., and Leeuwen, W.V., 1999, MODIS vegetation index (MOD 13) algorithm theoretical basis document Version 3.0, 120 p.
  6. Jin, M. and Liang, S., 2006, An Improved Land Surface Emissivity Parameter for Land Surface Models Using Global Remote Sensing Observations. Journal of Climate, 19, 2867-2881. https://doi.org/10.1175/JCLI3720.1
  7. Lee, H.T., Laszlo, I., and Gruber, A., 2010, ABI Earth Radiation Budget Upward Longwave Radiation: Surface (ULR). NOAA NESIDS CENTER for SATELLITE APPLICATIONS and RESEARCH, Algorithm Theoretical Basis Document Version 2.0, 39 p.
  8. Levesque, R., 2007, SPSS programming and Data Management, 4th Edition, A Guide for SPSS and SAS Users. SPSS Incorporated., Chicago, USA, 522 p.
  9. Liang, S., Wang, K., and Townshend, J., 2008, Land Surface Thermal-IR Emissivity Modeling. https://www.star.nesdis.noaa.gov/jcsda/documents/meetings/wkshp2008/3/Land_Surface_Thermal-IR_Emissivity_Modeling3.pdf(December 15th 2016)
  10. NASA, 2017, CERES_SSFdeg-Hour/Day/Month_Ed4A Data Quality Summary. https://ceres.larc.nasa.gov/dqs.php
  11. Ogawa, K., Schmugge, T., Jacob, F., and French, A, 2002, Estimation of Broadband land surface emissivity from multi-spectral thermal infrared remote sensing. Agro nomie, 22, 695-696. https://doi.org/10.1051/agro:2002055
  12. Ogawa, K.T., Schmugge, T., and Jacob, F., 2003, Estimation of land surface window ($8-12{\mu}m$) emissivity from multi-spectral thermal infrared remote sensing-A case study in a part of Sahara Desert. Geophysical Research Letters, 30, 1067-1070.
  13. Park, K.H. and Suh, M.S., 2013, Inter-comparison of three land surface emissivity data set (MODIS, CIMSS, KNU) in the Asian-Oceanian regions. Korean Journal of Remote Sensing, 29, 219-233. (in Korean) https://doi.org/10.7780/kjrs.2013.29.2.6
  14. Park, K.H. and Suh, M.S., 2014, Improvement of infrared channel emissivity data in COMS observation area from recent MODIS data (2009-2012). Korean Junrnal of Remote sensing, 30, 109-126. https://doi.org/10.7780/kjrs.2014.30.1.9
  15. Tang, B.H., Wu, H., Li, C., and Li, Z.L., 2011, Estimation of broadband surface emissivity from narrowband emissivities. Optics express, 19, 185-192. https://doi.org/10.1364/OE.19.000185
  16. Wan, Z., 1999, MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LSTATBD) Version 3.3. Institute for Computational Earth System Science University of California, Santa Barbara, 75 p.
  17. Wang, K., Liu, J., Zhou, X., Sparrow, M., Ma, M., Sun, Z., and Jiang, W., 2004, Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan Plateau. Journal of Geophysical Research, 109, D05107.
  18. Wang, K., Wan, Z., Wang, P., Sparrow, M., Liu, J., Zhou, X., and Haginoya, S., 2005, Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. Journal of Geophysical Research, 110, D11109. https://doi.org/10.1029/2004JD005566