• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.037 seconds

Comparison of Chlorophyll Algorithms in the Bohai Sea of China

  • Xiu, Peng;Liu, Yuguang;Rong, Zengrui;Zong, Haibo;Li, Gang;Xing, Xinogang;Cheng, Yongcun
    • Ocean Science Journal
    • /
    • v.42 no.4
    • /
    • pp.199-209
    • /
    • 2007
  • Empirical band-ratio algorithms and artificial neural network techniques to retrieve sea surface chlorophyll concentrations were evaluated in the Bohai Sea of China by using an extensive field observation data set. Bohai Sea represents an example of optically complex case II waters with high concentrations of colored dissolved organic mattei (CDOM). The data set includes coincident measurements of radiometric quantities and chlorophyll a concentration (Chl), which were taken on 8 cruises between 2003 and 2005, The data covers a range of variability in Chl in surface waters from 0.3 to 6.5 mg $m^{-3}$. The comparison results showed that these empirical algorithms developed for case I and case II waters can not be applied directly to the Bohai Sea of china, because of significant biases. For example, the mean normalized bias (MNB) for OC4V4 product was 1.85 and the root mean square (RMS) error is 2.26.

Development of the Kinematic Global Positioning System Precise Point Positioning Method Using 3-Pass Filter

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Cho, Sung-Ki;Park, Jong-Uk;Park, Pil-Ho;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.269-274
    • /
    • 2012
  • Kinematic global positioning system precise point positioning (GPS PPP) technology is widely used to the several area such as monitoring of crustal movement and precise orbit determination (POD) using the dual-frequency GPS observations. In this study we developed a kinematic PPP technology and applied 3-pass (forward/backward/forward) filter for the stabilization of the initial state of the parameters to be estimated. For verification of results, we obtained GPS data sets from six international GPS reference stations (ALGO, AMC2, BJFS, GRAZ, IENG and TSKB) and processed in daily basis by using the developed software. As a result, the mean position errors by kinematic PPP showed 0.51 cm in the east-west direction, 0.31 cm in the north-south direction and 1.02 cm in the up-down direction. The root mean square values produced from them were 1.59 cm for the east-west component, 1.26 cm for the south-west component and 2.95 cm for the up-down component.

Research on Wind Waves Characteristics by Comparison of Regional Wind Wave Prediction System and Ocean Buoy Data (지역 파랑 예측시스템과 해양기상 부이의 파랑 특성 비교 연구)

  • You, Sung-Hyup;Park, Jong-Suk
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.7-15
    • /
    • 2010
  • Analyses of wind wave characteristics near the Korean marginal seas were performed in 2008 and 2009 by comparisons of an operational wind wave forecast model and ocean buoy data. In order to evaluate the model performance, its results were compared with the observed data from an ocean buoy. The model used in this study was very good at predicting the characteristics of wind waves near the Korean Peninsula, with correlation coefficients between the model and observations of over 0.8. The averaged Root Mean Square Error (RMSE) for 48 hrs of forecasting between the modeled and observed waves and storm surges/tide were 0.540 m and 0.609 m in 2008 and 2009, respectively. In the spatial and seasonal analysis of wind waves, long waves were found in July and September at the southern coast of Korea in 2008, while in 2009 long waves were found in the winter season at the eastern coast of Korea. Simulated significant wave heights showed evident variations caused by Typhoons in the summer season. When Typhoons Kalmaegi and Morakot in 2008 and 2009 approached to Korean Peninsula, the accuracy of the model predictions was good compared to the annual mean value.

Predicting strength of SCC using artificial neural network and multivariable regression analysis

  • Saha, Prasenjit;Prasad, M.L.V.;Kumar, P. Rathish
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.31-38
    • /
    • 2017
  • In the present study an Artificial Neural Network (ANN) was used to predict the compressive strength of self-compacting concrete. The data developed experimentally for self-compacting concrete and the data sets of a total of 99 concrete samples were used in this work. ANN's are considered as nonlinear statistical data modeling tools where complex relationships between inputs and outputs are modeled or patterns are found. In the present ANN model, eight input parameters are used to predict the compressive strength of self-compacting of concrete. These include varying amounts of cement, coarse aggregate, fine aggregate, fly ash, fiber, water, super plasticizer (SP), viscosity modifying admixture (VMA) while the single output parameter is the compressive strength of concrete. The importance of different input parameters for predicting the strengths at various ages using neural network was discussed in the study. There is a perfect correlation between the experimental and prediction of the compressive strength of SCC based on ANN with very low root mean square errors. Also, the efficiency of ANN model is better compared to the multivariable regression analysis (MRA). Hence it can be concluded that the ANN model has more potential compared to MRA model in developing an optimum mix proportion for predicting the compressive strength of concrete without much loss of material and time.

Evaluation of the Total Column Ozone in the Reanalysis Datasets over East Asia (동아시아 지역 오존 전량 재분석 자료의 검증)

  • Han, Bo-Reum;Oh, Jiyoung;Park, Sunmin;Son, Seok-Woo
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.659-669
    • /
    • 2019
  • This study assesses the quality of the total column ozone (TCO) data from five reanalysis datasets against nine independent observation in East Asia. The assessed datasets are the ECMWF Interim reanalysis (ERAI), Monitoring Atmosphere Composition and Climate reanalysis (MACC), Copernicus Atmosphere Monitoring Service reanalysis (CAMS), the NASA Modern-Era Retrospective analysis for Research and Applications, Version2 (MERRA2), and NCEP Climate Forecast System Reanalysis (CFSR). All datasets reasonably well capture the spatial distribution, annual cycle and interannual variability of TCO in East Asia. In particular, characteristics of TCO according to the latitude difference were similar at all points with a maximum bias of less than about 4%. Among them, CAMS and CFSR show the smallest mean bias and root-mean square error across all nine ground-based observations. This result indicates that while TCO data in modern reanalyses are reasonably good, CAMS and CFSR TCO data are the best for analysing the spatio-temporal variability and change of TCO in East Asia.

Comparison of Automatic Calibration for a Tank Model with Optimization Methods and Objective Functions

  • Kang, Min-Goo;Park, Seung-Woo;Park, Chang-Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.7
    • /
    • pp.1-13
    • /
    • 2002
  • Two global optimization methods, the SCE-UA method and the Annealing-simplex (A-S) method for calibrating a daily rainfall-runoff model, a Tank model, was compared with that of the Downhill Simplex method. The performance of the four objective functions, DRMS (daily root mean square), HMLE (heteroscedastic maximum likelihood estimator), ABSERR (mean absolute error), and NS (Nash-Sutcliffe measure), was tested and synthetic data and historical data were used. In synthetic data study. 100% success rates for all objective functions were obtained from the A-S method, and the SCE-UA method was also consistently able to obtain good estimates. The downhill simplex method was unable to escape from local optimum, the worst among the methods, and converged to the true values only when the initial guess was close to the true values. In the historical data study, the A-S method and the SCE-UA method showed consistently good results regardless of objective function. An objective function was developed with combination of DRMS and NS, which putted more weight on the low flows.

Simulation and Model Validation of a Parabolic Trough Solar Collector for Water Heating

  • Euh, Seung-Hee;Kim, Dae Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.17-26
    • /
    • 2013
  • The aim of this study is to analyze the performance of a parabolic trough solar collector (PTC) for water heating and to validate the model performance. The simulated model was compared, calibrated and verified with the experimental results. RMSE (Root mean square error) was used to calibrate the convective heat transfer coefficient between the absorber pipe and the ambient air which was the main factor affecting the heat transfer associated with the PTC. The calibrated model was better fitted with the experimental model. The maximum, minimum and mean deviation between the measured and predicted water temperatures differed only $0.81^{\circ}C$, $0.09^{\circ}C$ and $0.31^{\circ}C$ respectively in the calibrated model. RMSE values were decreased from 0.5389 to 0.4910, 0.0134 to 0.0125 and R-squared was increased from 0.9955 to 0.9956 after calibration. The temperature of water was increased from $33.7^{\circ}C$ to $48^{\circ}C$ in 12hour test. The thermal efficiency of the collector was calculated to be 55%. The calibrated model showed good agreement with the experimental data for model validation.

An Experiment on Image Restoration Applying the Cycle Generative Adversarial Network to Partial Occlusion Kompsat-3A Image

  • Won, Taeyeon;Eo, Yang Dam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.33-43
    • /
    • 2022
  • This study presents a method to restore an optical satellite image with distortion and occlusion due to fog, haze, and clouds to one that minimizes degradation factors by referring to the same type of peripheral image. Specifically, the time and cost of re-photographing were reduced by partially occluding a region. To maintain the original image's pixel value as much as possible and to maintain restored and unrestored area continuity, a simulation restoration technique modified with the Cycle Generative Adversarial Network (CycleGAN) method was developed. The accuracy of the simulated image was analyzed by comparing CycleGAN and histogram matching, as well as the pixel value distribution, with the original image. The results show that for Site 1 (out of three sites), the root mean square error and R2 of CycleGAN were 169.36 and 0.9917, respectively, showing lower errors than those for histogram matching (170.43 and 0.9896, respectively). Further, comparison of the mean and standard deviation values of images simulated by CycleGAN and histogram matching with the ground truth pixel values confirmed the CycleGAN methodology as being closer to the ground truth value. Even for the histogram distribution of the simulated images, CycleGAN was closer to the ground truth than histogram matching.

Improved Height Determination Using a Correction Surface by Combining GNSS/Leveling Co-points and Thailand Geoid Model 2017

  • Dumrongchai, Puttipol;Buatong, Titin;Satirapod, Chalermchon;Yun, Seonghyeon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.305-313
    • /
    • 2022
  • The evolution of the GNSS (Global Navigation Satellite System) technology has enhanced positioning performance in terms of positioning accuracy and time efficiency. The technology makes it possible to determine orthometric heights at a few centimeter accuracies by transforming accurate ellipsoid heights if an accurate geoid model has been employed. This study aims to generate a correction surface using GNSS/leveling co-points and a local geoid model, Thailand Geoid Model 2017 (TGM2017), through the Kriging interpolation method in a small local area. Combining the surface and TGM2017 significantly improves height transformation with the 1-cm RMSE (Root Mean Square Error) fit of 10 GNSS/leveling reference points and a mean offset of +0.1 cm. The evaluation of the correction surface at 5 GNSS/leveling checkpoints shows the RMSE of 1.0 cm, which is 82.6 percent of accuracy improvements. The GNSS leveling method can possibly be used to replace a conventional leveling technique at a few centimeter uncertainties in the case of small areas with clear-sky and high satellite visibility environments.

Accurate Wind Speed Prediction Using Effective Markov Transition Matrix and Comparison with Other MCP Models (Effective markov transition matrix를 이용한 풍속예측 및 MCP 모델과 비교)

  • Kang, Minsang;Son, Eunkuk;Lee, Jinjae;Kang, Seungjin
    • New & Renewable Energy
    • /
    • v.18 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • This paper presents an effective Markov transition matrix (EMTM), which will be used to calculate the wind speed at the target site in a wind farm to accurately predict wind energy production. The existing MTS prediction method using a Markov transition matrix (MTM) exhibits a limitation where significant prediction variations are observed owing to random selection errors and its bin width. The proposed method selects the effective states of the MTM and refines its bin width to reduce the error of random selection during a gap filling procedure in MTS. The EMTM reduces the level of variation in the repeated prediction of wind speed by using the coefficient of variations and range of variations. In a case study, MTS exhibited better performance than other MCP models when EMTM was applied to estimate a one-day wind speed, by using mean relative and root mean square errors.