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Abstract — Empirical band-ratio algorithms and artificial neural
network techniques to retrieve sea surface chlorophyll
concentrations were evaluated in the Bohai Sea of China by
using an extensive field observation data set. Bohai Sea
represents an example of optically complex case II waters with
high concentrations of colored dissolved organic matter (CDOM).
The data set includes coincident measurements of radiometric
quantities and chlorophyll a concentration (Chl), which were
taken on 8 cruises between 2003 and 2005. The data covers a
range of variability in Chl in surface waters from 0.3 to 6.5 mg m”,
The comparison results showed that these empirical algorithms
developed for case I and case II waters can not be applied
directly to the Bohai Sea of China, because of significant biases. For
example, the mean normalized bias (MNB) for OC4V4 product
was 1.85 and the root mean square (RMS) error is 2.26.

Key words — chlorophyli concentration, ocean color, remote
sensing model, case II waters, Artificial Neural Network

1. Introduction

Satellite ocean color research began in the late 1970s with
the coastal zone color scanner (CZCS) aboard the Nimbus 7
satellite which acquired data from October 1978 to June
1986 (Evans and Gordon 1994; Acker 1994). Since then,
significant efforts have been made to develop ocean color
satellite missions with improved spectral and radiometric
performance, spatial and temporal coverage, and quality of
data products (Morel 1998). These efforts have resulted in
the Sea-viewing Wide Field-of-view Sensor (SeaWiFS)
(Hooker and McClain 2000), launched on the OrbView-2
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spacecraft in August 1997, and the Moderate Resolution
Imaging Spectroradiometers (MODIS) (Esaias er al. 1998),
launched on the NASA Earth Observing System (EOS)
satellites Terra and Aqua in December 1999 and May 2002,
respectively.

Satellite ocean color data provides a practical means for
monitoring the spatial and seasonal variation of near
surface information for the study of oceanic primary
production, global carbon and other biological cycles. The
influence of phytoplankton on the ocean color of seawater
has been studied for several decades. It is well understood
that chlorophyll a (Chl), the primary photosynthetic pigment in
phytoplankton, absorbs relatively more blue and red light
than green, and the spectrum of backscattered sunlight
progressively shifts from deep blue to green as the concentration of
phytoplankton increases (O’ Reilly et al. 1998). In case 1
waters, substances other than phytoplankton are either
optically insignificant or correlated with phytoplankton.
The case [ water assumptions imply that the ocean optical
properties can be modeled as a function of chlorophyll
concentration alone, which has led to algorithms for
retrieving phytoplankton pigments from remotely sensed
ocean color. The current satellite operational algorithms for
retrieval of pigments and other bio-optical properties have
been empirically derived from field data collected mainly in
ocean waters that are assumed to be case I (e.g. O’Reilly et
al. 1998, 2000). According to a bipartite classification
scheme, optically complex waters that cannot be classified
as case I are designated as case II waters. Typically, case I
waters include coastal and inland water bodies where
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agents other than phytoplankton such as suspended
inorganic particles and/or dissolved organic matter (and
perhaps even a bottom reflectance) make a significant
contribution to the optical properties (e.g. Bukata et al.
1995; Sathyendranath 2000). It is well recognized that case
II waters require new algorithms based on new approaches
for dealing with both atmospheric correction and retrievals
of ocean bio-optical properties from water-leaving radiance
(Sathyendranath 2000). Therefore, it is useful to develop an
understanding of limitations and to quantify errors of
current standard algorithms in various case II waters,
especially as no specific algorithms exist that would allow
masking of regions where case 1 algorithms may not hold.

The Bohai Sea of China is a semi-enclosed sea with a
typical case II water environment, located at the northernmost
end of eastern Chinese mainland between 37°07~41°N and
117°35'~122°15E (see Fig. 1). Case II waters in the Bohai
Sea are often dominated by colored dissolved organic
matter (CDOM). Large discharges from rivers and a relatively
shallow sea floor significantly influence the optical properties.
Studies showed that subsurface chlorophyll maximum
concentration also has a significant effect on sea surface
chlorophyll concentration (Xiu and Liu, 2006; Xiu ef al.
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2007). Thus, a comprehensive analysis of the performance
of empirical algorithms that are based on the blue-green
bands should be beneficial for the current use of remote
sensing and for future efforts on algorithm development.

2. Materials and Methods

The validation of six bio-optical algorithms and one
Artificial Neural Network (ANN) algorithm (see Appendix
A and figure 9) was carried out with field data collected on 8
cruises between 2003 and 2005 (Table 1). The data were
collected under various environmental conditions. The
spatial coverage includes very turbid waters in the mouth

Table 1. The list of cruises and the number of optical measurements
made in each cruise

Cruise Date Measured Chl and R,
1 March 21-March 23, 2003 April 13
2 19-April 25,2003 7
3 June 18-June 26, 2003 41
4 July 13-July 15, 2003 7
5 August 12-August 26, 2003 42
6 August 9-August 22, 2004 30
7 June 6-June 18, 2005 48
8 August 23-September 1, 2005 44
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Fig. 1. Map of the Bohai Sea, showing major geographical features.
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area of Yellow river; less turbid coastal waters and relative
clear water further away from the coast and in the central
Bohai.

Radiometric measurements

The spectral remote-sensing reflectance (R (A)) and
normalized water-leaving radiance (L, (A)) were calculated
by above-water measurements. Briefly, multiple spectra of
above-surface upwelling radiance (L,) and downwelling
sky radiance (L,) were collected by using a 256-channel
spectroradiometer with wavelengths ranging from 365 to
1070 nm. The water-leaving radiance was then calculated
by subtracting from the total upwelling radiance the portion
of the skylight reflected into the sensor along with any solar
glint (Lee et al. 1996):

L,(A) = L) —r(i)L.(i) - AE, (1)

where i is the zenith angle, #(i) is the Fresnel reflectance.
For open ocean, AE, a solar glint correction, is estimated by
assuming L (750)=0; For coastal waters, AE, is estimated
iteratively without assuming L (750)=0 (Lee and Carder
2004). We measured spectra L, and L, three times respectively,
and in order to obtain L, , the averaged spectra of L, and L,
were used in order to decrease random measurement errors
(Lee et al. 1996).

Using the measured radiance (L,) normal to a standard
diffuse reflectance panel, the total downwelling irradiance
E, is determined by

_ nls(A
E\) = R%;(f)) ?)

where R,; is the reflectance of the diffuse panel, whose value
is about 25% used in our experiments. Then spectral
remote-sensing reflectance and normalized water-leaving
radiance was obtained by

R.(M) = IE:J(% 3)
L..(A) = Fo(M)R,. (L) “4)

where F(A) is the mean extraterrestrial solar irradiance at a
given spectral band.

Chlorophyll a measurements
On all cruises, the chlorophyll a concentration was

determined using the spectrophotometric method. The
samples of surface water were filtered under low pressure
(less than 0.5 atm) using Whatman glass-fiber filters (GF/F
47 mm in diameter) as soon as possible after collection. The
particulate matter retained on the filters was extracted for a
24 hour in 96% ethanol. The absorbance of the extract was
then measured on a specific spectrophotometer. With the
measured absorbance, chlorophyll concentrations were
then converted by (Darecki and Stramski 2004).

Evaluation criteria

We will now evaluate the performance of six ocean color
algorithms in the Bohai Sea using measured R (A) and
L, () as inputs (shown in Appendix A). The evaluation
process is based on a comparison of the algorithm-derived
values of the pigment concentration with the field observations.
The mean normalized bias (MNB) (systematic error) and
the normalized root mean square (RMS) error (random
error) are defined as follows:

MNB = mean( “‘“y_ ””“) 5)
obs
RMS=sta(y—‘”g = b) (6)
yubs

where y,, is chlorophyll concentration estimated from the
algorithm, y, is the observed value, and ‘mean’ and ‘std’
indicate the calculations of mean and standard deviation
values, respectively:

mean()=1 = 131, )
i=1

wat) = [ 15300 - i)zr ®)

where 7 is the variable of interest. We also used the statistics
based on root mean square of the logarithm of the ratio of
algorithm-derived to measured values. Such statistics can
provide a good measure of data scatter for lognormally
distributed variables, which are often observed for
chlorophyll data sets. These errors are calculated from the
following equations

log_bias = mean (log(ﬁg)) )

0bs

log rms = std (log (MD (10)

yubs
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3. Results and Discussions

Fig. 2 shows the frequency distribution of chlorophyll
concentration based on our entire data set. From this
histogram we can see that the range of concentration is
approximately from 0.3 to 6.5 mg m”, and chlorophyll
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Fig. 2. Frequency distribution of chlorophyll concentration based

on our entire data set; the ticks of the y-axis denote the
number of investigation sites.
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values between 0.3 and 1.05 mg m” occur most frequently.

Comparisons of measured and the six algorithm-derived
estimates of chlorophyll concentrations are presented in
Figs. 3-8. Fig. 3a shows the CZCS_pigm comparison result.
The underestimation data points (60%) and overestimation
data points (40%) spread almost equally around the 1:1 line.
The CZCS_pigm algorithm gives in many cases very high
relative errors, some of which are often unrealistically high
as is shown in Fig. 3b. The highest relative error is 1000%,
and there are about 19% stations where the relative errors
are higher than 100%. Except for the highest relative error,
the other errors continuously decrease from about 600%.
The correlation coefficient between retrieved and measured
chlorophyll concentration is 0.20; the MNB and RMS error
are (.42 and 1.57 respectively. The log_bias is -0.029 and
log_rmsis 0.81. Fig. 3¢ shows the geographical positions of
our investigation sites. Apparently, stations with high
relative errors lie most in the Bohai Bay, Laizhou Bay and
Yellow River area. The high errors are mainly due to the
high concentrations of the suspended particulate matter
brought by the inputs of the Yellow River. We can see that
there is a good regression relationship between these high
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Fig. 3. Comparison results of CZCS pigm algorithm. (a) Statistical relationship between measured chlorophyll concentration and
CZCS_pigm results. (b) Relative errors. (¢) Geographical positions of our investigation sites, in which points denoted by circles
are where relative errors are higher than 100%. d) Statistical relationship between the measured Chl and R in the area where
relative errors are higher than 100%; the solid curve is the polynomial regression curve and the dashed curve is the standard

CZCS_pigm curve.
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Fig. 4. Comparison results of SeaWiFS OC2v4 algorithm. (a) Statistical relationship between measured chlorophyll concentration and
OC2v4 results. (b) Relative errors. (c) Geographical positions of our investigation sites, in which points denoted by circles are
where relative errors are higher than 100%. (d) Statistical relationship between the measured Chl and R in the area where relative
errors are higher than 100%; the solid curve is the polynomial regression curve and the dashed curve is the standard OC2v4

curve.

error points (Fig. 3d), and the correlation coefficient is 0.79;
the MNB and normalized RMS error are 0.14 and 0.44
respectively.

Fig. 4 shows the comparison results between SeaWiFS
algorithm OC2v4 derived chlorophyll concentrations and
measured values. As we can see, most of the derived values
(79%) show overestimations. The highest relative error is
1013% and from which the relative error continuously
decreases. There are about 57% stations where relative
errors are higher than 100%. Correlation coefficient
between retrieved and measured chlorophyll concentration
is 0.30; MNB and RMS error are 1.56 and 2.45 respectively.
The log_bias is 0.83 and log_rms is 0.69 (Figs. 4a, b). It is
also indicated that data points with high errors (relative
errors >100%) spread in almost the entire Bohai Sea, and
low errors only occur in the Liaodong Bay area (Fig. 4c).
However, we can not obtain a good polynomial regression
relationship between these two types of data (Fig. 4d); the
correlation coefficient between them is 0.62; the MNB and
the normalized RMS error are 0.28 and 0.65 respectively.

Performance of SeaWiFS OC4v4 in the Bohai Sea is
shown in Fig. 5. The result shows an obvious overestimation
(about 90% data points in all) of the real chlorophyll

concentrations. The highest relative error is 956% and from
which the relative error continuously decreases. There are
about 49% stations where relative errors are higher than
100%. Correlation coefficient between retrieved and
measured chlorophyll concentration is 0.48; the MNB and
the normalized RMS error are 1.85 and 2.26, respectively.
The log bias is 0.79 and log rms is 0.70. Like CZCS
algorithm, high error data points mostly exist in the Bohai
Bay, Laizhou Bay and especially in the Yellow River area
(Fig. 5¢). In figure5d, the shape of the regression curve is
quite like standard OC4v4 curve. Correlation coefficient
between the measured and derived concentrations is 0.60,
and the MNB and the normalized RMS error are 0.23 and
0.59 respectively.

Performance of the MODIS case I water algorithm
chlor MODIS in the Bohai Sea is shown in Fig. 6. Like
CZCS algorithm, the underestimation data points (54%)
and overestimation data points (46%) spread almost equally
around the 1:1 line. The highest relative error is 990.1%,
and there are about 22% stations where relative errors are
higher than 100%. Except for the highest relative error, the
other errors continuously decrease from about 600%.
Correlation coefficient between retrieved and the measured
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Fig. 5. Comparison results of SeaWiFS OC4v4 algorithm. (a) Statistical relationship between measured chlorophyll concentration and
OC4v4 results. (b) Relative errors. (c) Geographical positions of our investigation sites, in which points denoted by circles are
where relative errors are higher than 100%. (d) Statistical relationship between the measured Chl and R in the area where relative
errors are higher than 100%; the solid curve is the polynomial regression curve and the dashed curve is the standard OC4v4

curve.
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Fig. 6. Comparison results of MODIS case I chlor MODIS algorithm. (a) Statistical relationship between measured chlorophyll
concentration and chlor MODIS results. (b) Relative errors. (¢) Geographical positions of our investigation sites, in which
points denoted by circles are where relative errors are higher than 100%. (d) Statistical relationship between the measured Chl
and R in the area where relative errors are higher than 100%, the solid curve is the polynomial regression curve and the dashed
curve is the standard chlor MODIS curve,
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Fig. 7. Comparison results of MODIS case Il chlor a 2 algoritim. (a) Statistical relationship between measured chlorophyll
concentration and chlor_a_2 results. (b) Relative errors. (c) Geographical positions of our investigation sites, in which points
denoted by circles are where relative errors are higher than 100%. (d) Statistical relationship between the measured Chl and R in
the area where relative errors are higher than 100%; the solid curve is the polynomial regression curve and the dashed curve is

the standard chlor_a 2 curve.

chlorophyll concentration is 0.27, the MNB and the normalized
RMS error are 0.50 and 1.53 respectively. The log_bias is
0.07 and log_rms is 0.77. Also, most of the large error data
points exist in the Bohai Bay, Laizhou Bay and the Yellow
River area (Fig. 6¢). Correlation coefficient of the data
points where relative errors are higher than 100% is 0.80,
and the MNB and the normalized RMS error are 0.14 and
0.54 respectively (Fig. 6d).

Performance of the MODIS case II water algorithm
chlor_a 2 in the Bohai Sea is shown in Fig. 7. The result
shows an obvious overestimation (about 99% data points of
all) of the real chlorophyll concentrations. The highest
relative error is 1112% and from which the relative error
continuously decreases. There are about 49% stations
where relative errors are higher than 100%. Correlation
coefficient between retrieved and measured chlorophyll
concentration is 0.48, the MNB and the normalized RMS
error are 1.95 and 2.48, respectively. The log_bias is 0.81
and log_rms is 0.72. Most of the large error data points exist
in the Bohai Bay, Laizhou Bay and the Yellow River area
(Fig. 7c). The correlation coefficient of the data points that
relative errors are higher than 100% is 0.66, and the MNB

and the normalized RMS error are 0.25 and 0.62 respectively
(Fig. 74d).

Tang’s model (Tang ef al. 2004) chlor t algorithm is a
regional model derived from the in-situ observations in the
south Yellow Sea and East China Sea. This algorithm was
also tested here, because it is suitable for chlorophyll
retrieval in China seas. Using this algorithm in the Bohai
Sea, we also obtained an obvious overestimation (about
80% data) of the real chlorophyll concentration. The
highest relative error is 478% and from which the relative
error continuously decreases. There are about 34% stations
where relative errors are higher than 100%. Correlation
coefficient between retrieved and measured chlorophyll
concentration is 0.66; the MNB and the normalized RMS
error are 1.00 and 1.22 respectively. The log_bias is 0.53
and log_rms is 0.57. Different from above algorithms, high
error data points exist only in the Bohai Bay and the Yellow
River area (Fig. 8c). We also can get a good regression
relationship (cotrelation coefficient is 0.86) between R and
measured Chl of the data points where relative errors are
higher than 100%. The MNB and the normalized RMS
error are 0.09 and 0.34 respectively (Fig. 8d).
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In addition to the band-ratio algorithms, we also tested the
performance of the Artificial Neural Network (ANN) techniques
to retrieve sea surface chlorophyll concentrations in the
Bohai Sea. Neural networks were originally developed to
model the functioning of the human brain. They have
applications in the fields of classification, pattern recognition, and
signal processing. A complete introduction to the different
types of neural networks and their applications can be found
in Wasserman (1989), Beale and Jackson (1990), Dayhoff
(1990), and Masters (1993; 1995) ef al. It has been recognized
that artificial neural network techniques also have a good
potential to derive the water constituents both in case I and
case Il waters (Schiller and Doerffer 1999). Gross et al. (2000)
have shown that noise from radiometric performance,
imperfect atmospheric correction, and the passage from bi-
directional reflectance can be more effectively filtered out
of data from case I water with a forward-feed, back propagating
neural network. Furthermore, Keiner and Brown (1999)
produced an improved chlorophyll algorithm by applying a
similar ANN to a data set of ship-based reflectances at the
same spectral bands as SeaWiFS data in predominately case
I'waters. Also, past research has shown that satellite ocean

color data, in conjunction with a neural network, can be
used to effectively discern several water constitutes, including
chlorophyll concentration, suspended sediment, and gelbstoff
and also can be used to correct for imperfect atmospheric
correction in case Il waters (Zhang et al. 2003; Baruah et al.
2000; Keiner and Yan 1998). In the present study, we
proposed a multi-layer, feedforward type, and error
backpropagation neural network (Fausset 1994. see
figure9). This network consists of an input layer, one hidden
layer, and an output layer. Each layer is connected by a
series of weights. These weights are simply variables. Their
collective purpose is to act as memory for the system. When
a network learns to map an input to an output vector, this
mapping is contained in the weights. The number of hidden
layer nodes needed depends on the complexity of the
function to be approximated.

In this study, input to the network is diffuse remote-
sensing reflectance just above the sea surface, and output is
the concentration of sea surface chlorophyll. Field data in
the Bohai Sea were divided into two parts, one was used as
the training data set (70% data), and the other was used as
the validation data set (30% data). To determine which and
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input layer

hidden layer output

Fig. 9. The structure of simplified artificial neural network.

how many spectral bands or band ratios are best for pigment
retrieval, several combinations of input data were tested.
Another important factor influencing the performance of
the ANN is the number of hidden neurons used. Generally
speaking, if too few hidden neurons are used, high training
error and high generalization error may be obtained due to
underfitting and high statistical bias. If too many hidden
neurons are used, low training error may result, but there
may be high generalization errors due to overfitting and
high variance. Overfitting is a situation where the network
correctly learns not only the correct pattern, but also the
noise in the inputs, resulting in poor performance when
network is applied to real problems (Krasnopolsky et al.
1995). So, we tested the number of neurons from 4 to 30.

After experimentation, Fig. 10 shows our best combination of
ANN with remote-sensing reflectance at band 412, 443,

490, 510, 555, 670, 700, and 720 as the inputs; the number
of the hidden neurons is 5. For the validation data set,
correlation coefficient between the log-transformed ANN
derived-concentration and measured is 0.94 and RMS is
0.083. However, during our model training, the phenomena
of overfitting always occur. It is very difficult to get a good
result with low RMS. Sometimes we can get low RMS for
the training data, but with very high RMS for the validation
data. When we apply this well-trained and validated
network in some our newly measured data, the retrieval
result is quite poor (correlation coefficient is 0.32). The
reason for this may be due to the complicated relationship
between remote-sensing reflectance and sea surface
chlorophyll concentration caused by the high concentrations of
suspended particular matter and color dissolved organic
matter or the bottom effect.

4. Conclusions

We tested the performance of six empirical band-ratio
algorithms and one ANN technique to retrieve sea surface
chlorophyll concentration using an extensive bio-optical
data set collected on 8 cruises between 2003 and 2005. Our
analysis revealed a systematic and large overestimation or
underestimation of chlorophyll products by using some
algorithms designed for case II waters. It appears that the
Bohai Sea requires new approaches and new parameterizations

ANN outputs (training data)
.

ANN outputs (validation data)
)

10

-1

10°
measured chl

10

Fig. 10. Scatter plot of the ANN derived chlorophyll concentration with the measured concentration.
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for both empirical and semi-analytical pigment algorithms. High
concentrations of CDOM, detritus, and suspended particulate
matters caused by large riverine discharges or local wind-
induced vertical mixing all contribute to the failure of
pigment algorithms. Also, since the average depth in the
Bohai Sea is only 18 meters, ocean bottom effect may be a
large source of retrieval errors.

For the present operational pigment algorithms, it seems
that CZCS_pigm and chlor MODIS algorithms have higher
accuracy over the entire Bohai Sea region. Surprisingly,
both of the algorithms use normalized water-leaving
radiance as an input factor. The reason for this may be due
to the field measurement carried out just above sea surface
but not from the space. OC4V4 and chlor_a 2 algorithms
have moderate ability in pigment retrieval, and OC2V4
algorithm is the worst one. Specifically, CZCS pigm and
chlor MODIS work well in Liaodong Bay and the central
region. The regional model chlor t works well in Laizhou
Bay. OC2V4, OC4V4 and chlor_a 2 seem to be better in
the Bohai Bay than CZCS_pigm and chlor MODIS, but
none of them is acceptable, and further investigation is
needed.
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Sensor Identifier

Algorithm

CZCS._pigm = 104

CZCS CZCS_pigm (Clark, 1997)

R=1log,(L, (443)/L,(551))

wn

where if R>0.7368 a=-1.4443, b=1.4947, ¢=-2.5283, d=-0.0433, and e=1.

if R>0.7368 a=-5.0511, b=2.8952, c=-0.5069, d=-0.11126, and e=1.

SeaWiF§ OC2V4 (O’Reilly er al. 1993).

chl oc2=e+1 (P rbReR=d
R =log (R, (490)/R,(555))

where a=-0.135, b=0.879, ¢=-2.336, d=0.319, and e=-0.071.

chl_ocd = e+ 10 e

SeaWiFS 0OC4V4 (O’Reilly er al. 2000). R= logm(

max(R,.(443)), R..(490), R,.(510)

R.(555) )

where a=-1.532, b=0.649, ¢=1.930, d=-3.076, and ¢=0.366.

chlor_MODIS = 0@k

MODIS chlor MODIS (Clark, 1997)

R=log,(L,(443)+ L, (488))/L,(551)]

wn

where if R>0.9866 a=-2.8237, b=4.7122, ¢=-3.9110, d=0.8904, and e=1.

if R>0.9866 a=-8.1067, b=12.0707, ¢c=-6.0171, d=0.8791, and e=1.

chl_a_2 = ex]Q e e

MODIS chlor_a_2 (O’Reilly et al. 2000).

R =log,,[max(ry, 7;,)]
r,s= R (443)/R (551) r,,= R (448)/R (551)

where a=-1.403, b=0.659, ¢c=1.457, d=-2.753, and e=0.2830.

chlor_t= 10"

Regional model chior t (Tang et al. 2004).

R logm[R,x 443)Rm(510)]

R..(555)R..(412)
where a=-3.0679, b=-3.7278, and ¢=0.37457




