• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.027 seconds

Applying Machine Learning approaches to predict High-school Student Assessment scores based on high school transcript records

  • Nguyen Ba Tien;Hoai-Nam Nguyen;Hoang-Ha Le;Tran Thu Trang;Chau Van Dinh;Ha-Nam Nguyen;Gyoo Seok Choi
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.261-267
    • /
    • 2023
  • A common approach to the problem of predicting student test scores is based on the student's previous educational history. In this study, high school transcripts of about two thousand candidates, who took the High-school Student Assessment (HSA) were collected. The data were estimated through building a regression model - Random Forest and optimizing the model's parameters based on Genetic Algorithm (GA) to predict the HSA scores. The RMSE (Root Mean Square Error) measure of the predictive models was used to evaluate the model's performance.

Multivariate Time Series Analysis for Rainfall Prediction with Artificial Neural Networks

  • Narimani, Roya;Jun, Changhyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.135-135
    • /
    • 2021
  • In water resources management, rainfall prediction with high accuracy is still one of controversial issues particularly in countries facing heavy rainfall during wet seasons in the monsoon climate. The aim of this study is to develop an artificial neural network (ANN) for predicting future six months of rainfall data (from April to September 2020) from daily meteorological data (from 1971 to 2019) such as rainfall, temperature, wind speed, and humidity at Seoul, Korea. After normalizing these data, they were trained by using a multilayer perceptron (MLP) as a class of the feedforward ANN with 15,000 neurons. The results show that the proposed method can analyze the relation between meteorological datasets properly and predict rainfall data for future six months in 2020, with an overall accuracy over almost 70% and a root mean square error of 0.0098. This study demonstrates the possibility and potential of MLP's applications to predict future daily rainfall patterns, essential for managing flood risks and protecting water resources.

  • PDF

QZSS TEC Estimation and Validation Over South Korea

  • Byung-Kyu Choi;Dong-Hyo Sohn;Junseok Hong;Woo Kyoung Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2023
  • The ionosphere acts as the largest error source in the Global Navigation Satellite System (GNSS) signal transmission. Ionospheric total electron content (TEC) is also easily affected by changes in the space environment, such as solar activity and geomagnetic storms. In this study, we analyze changes in the regional ionosphere using the Qusai-Zenith Satellite System (QZSS), a regional satellite navigation system. Observations from 9 GNSS stations in South Korea are used for estimating the QZSS TEC. In addition, the performance of QZSS TEC is analyzed with observations from day of year (DOY) 199 to 206, 2023. To verify the performance of our results, we compare the estimated QZSS TEC and CODE Global Ionosphere Map (GIM) at the same location. Our results are in good agreement with the GIM product provided by the CODE over this period, with an averaged difference of approximately 0.1 TECU and a root mean square (RMS) value of 2.89 TECU.

Comparative studies of different machine learning algorithms in predicting the compressive strength of geopolymer concrete

  • Sagar Paruthi;Ibadur Rahman;Asif Husain
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.607-613
    • /
    • 2023
  • The objective of this work is to determine the compressive strength of geopolymer concrete utilizing four distinct machine learning approaches. These techniques are known as gradient boosting machine (GBM), generalized linear model (GLM), extremely randomized trees (XRT), and deep learning (DL). Experimentation is performed to collect the data that is then utilized for training the models. Compressive strength is the response variable, whereas curing days, curing temperature, silica fume, and nanosilica concentration are the different input parameters that are taken into consideration. Several kinds of errors, including root mean square error (RMSE), coefficient of correlation (CC), variance account for (VAF), RMSE to observation's standard deviation ratio (RSR), and Nash-Sutcliffe effectiveness (NSE), were computed to determine the effectiveness of each algorithm. It was observed that, among all the models that were investigated, the GBM is the surrogate model that can predict the compressive strength of the geopolymer concrete with the highest degree of precision.

Bi-LSTM model with time distribution for bandwidth prediction in mobile networks

  • Hyeonji Lee;Yoohwa Kang;Minju Gwak;Donghyeok An
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • We propose a bandwidth prediction approach based on deep learning. The approach is intended to accurately predict the bandwidth of various types of mobile networks. We first use a machine learning technique, namely, the gradient boosting algorithm, to recognize the connected mobile network. Second, we apply a handover detection algorithm based on network recognition to account for vertical handover that causes the bandwidth variance. Third, as the communication performance offered by 3G, 4G, and 5G networks varies, we suggest a bidirectional long short-term memory model with time distribution for bandwidth prediction per network. To increase the prediction accuracy, pretraining and fine-tuning are applied for each type of network. We use a dataset collected at University College Cork for network recognition, handover detection, and bandwidth prediction. The performance evaluation indicates that the handover detection algorithm achieves 88.5% accuracy, and the bandwidth prediction model achieves a high accuracy, with a root-mean-square error of only 2.12%.

ACE surrogate Model-Based uncertainty and sensitivity analysis methods for severe accident codes

  • Kwang-Il Ahn
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3686-3699
    • /
    • 2024
  • This paper explores the alternating conditional expectation (ACE) algorithm-based surrogate model to advance the state-of-practice in uncertainty and sensitivity analysis methodologies for severe accident codes. For engineering purposes, the ACE algorithm has been used as an alternative means to find the optimal functional forms of the multiple input variables and response variables of interest. Analysis results here demonstrate that compared with the reference cases the proposed surrogate model provides much higher performance in terms of the coefficient of determination (R2) and normalized root mean square error (NRMSE), thus giving more robust insights into the relationship and correlation between the input parameters and figures of merit (FOMs) of interest. Relevant results and insights are summarized in terms of points of interest.

Analysis of IMU Sensor Sensitivity According to Frequency Variation (주파수 변화에 따른 IMU 센서 민감도 분석)

  • Bugeon Lee;Seongbok Hong;Doohyun Baek;Junghyun Lim;Sanghoo Yoon
    • Journal of Integrative Natural Science
    • /
    • v.17 no.3
    • /
    • pp.113-122
    • /
    • 2024
  • Advancements in sensor technology, particularly Inertial Measurement Units (IMU), are crucial in modern pose estimation. IMUs typically consist of accelerometers and gyroscopes (6-axis), with some models including magnetometers (9-axis). This study investigates the impact of sensor frequency on pose estimation accuracy using data from a 256Hz IMU sensor. The data sets analyzed include "spiralStairs," "stairsAndCorridor," and "straightLine," with frequencies varied to 128Hz, 64Hz, and 32Hz, and conditions categorized as stationary or dynamic. The results indicate that sensitivity remains high at lower frequencies under stationary conditions but declines in dynamic conditions. Performance comparison, based on Root Mean Square Error (RMSE) values, showed that lower frequencies lead to increased RMSE, thus diminishing model accuracy. Additionally, the Extended Kalman Filter (EKF) was tested as an alternative to Madgwick's algorithm but faced challenges due to insufficient sensor noise data.

Development of Prediction Model for Flexibly-reconfigurable Roll Forming based on Experimental Study (실험적 연구를 통한 비정형롤판재성형 예측 모델 개발)

  • Park, J.W.;Kil, M.G.;Yoon, J.S.;Kang, B.S.;Lee, K.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.341-347
    • /
    • 2017
  • Flexibly-reconfigurable roll forming (FRRF) is a novel sheet metal forming technology conducive to produce multi-curvature surfaces by controlling strain distribution along longitudinal direction. Reconfigurable rollers could be arranged to implement a kind of punch die set. By utilizing these reconfigurable rollers, desired curved surface can be formed. In FRRF process, three-dimensional surface is formed from two-dimensional curve. Thus, it is difficult to predict the forming result. In this study, a regression analysis was suggested to construct a predictive model for a longitudinal curvature of FRRF process. To facilitate investigation, input parameters affecting the longitudinal curvature of FRRF were determined as maximum compression value, curvature radius in the transverse direction, and initial blank width. Three-factor three-level full factorial experimental design was utilized and 27 experiments using FRRF apparatus were performed to obtain sample data of the regression model. Regression analysis was carried out using experimental results as sample data. The model used for regression analysis was a quadratic nonlinear regression model. Determination factor and root mean square root error were calculated to confirm the conformity of this model. Through goodness of fit test, this regression predictive model was verified.

Fuzzy Modeling of Activated Sludge Process Using Linear Reasoning Method (하수처리 프로세스의 선형 추론 퍼지 모델링)

  • Oh, Sung-Kwun;Park, Jong-Jin;Lee, Seong-Ju;Hwang, Hee-Soo;Kim, Hyun-Ki;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.417-420
    • /
    • 1990
  • The conventional quantitative techniques of system analysis are intrinsically unsuited for dealing with humanistic systems. Therefore, the rule based modeling of fuzzy linguistic type has been developed for the analysis of humanistic systems and complex systems and it is very significant for analysis and design of fuzzy logic controller. The activated sludge process is a commonly used method for treating sewage and waste waters. A mathematical tool to build a fuzzy model of the activated sludge process where fuzzy implications and linear reasoning are used is presented in here. A root-mean square error is used as the criterion of the fuzzy model's adequacy to the A.S.P. and the least square method is used for the identification of optimum consequence parameters. A method of modeling of the activated sludge process using its input-output data and simulation results for its application are shown.

  • PDF

A Convergence Analysis of Normalized Sign Algorithm for Adaptive Noise Canceler (적응잡음제거기를 위한 정규 부호화 알고리즘의 수렴특성 분석)

  • 김현태;박장식;배종갑;손경식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1203-1210
    • /
    • 1999
  • Coefficients of the adaptive filter are misadjusted by primary signals which are uncorrelated with reference signals of the adaptive filter. In this paper, the normalized sign algorithm is analyzed and compared with the NLMS algorithm by the steady state performance and the transient characteristics when target signals are included in primary signals. The excess mean square error of the NLMS algorithm is proportional to the power of target signals. That of normalized sign algorithm is proportional to the square root of the target signal power. However, the convergence speed of the normalized sign algorithm is slower than that of NLMS algorithm. In this paper, it is shown that theoretical analysis of the steady state performance and the transient characteristics are well consisted with the results of computer simulation.

  • PDF