References
- Ahmad, A., Ahmad, W., Chaiyasarn, K., Ostrowski, K.A., Aslam, F., Zajdel, P. and Joyklad, P. (2021), "Prediction of geopolymer concrete compressive strength using novel machine learning algorithms", Polym., 13, 3389. https://doi.org/10.3390/polym13193389.
- Al-Gburi, S.N.A., Akpinar, P. and Helwan, A. (2022), "Machine learning in concrete's strength prediction", Comput. Concrere, 29, 433-444. https://doi.org/10.12989/cac.2022.29.6.433.
- Asteris, P.G., Skentou, A.D., Bardhan, A., Samui, P. and Pilakoutas, K. (2021), "Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models", Cement Concrete Res., 145, 106449. https://doi.org/10.1016/j.cemconres.2021.106449.
- Ben Chaabene, W., Flah, M. and Nehdi, M.L. (2020), "Machine learning prediction of mechanical properties of concrete: Critical review", Constr. Build. Mater., 260, 119889. https://doi.org/10.1016/j.conbuildmat.2020.119889.
- Cao, R., Fang, Z., Jin, M. and Shang, Y. (2022), "Application of machine learning approaches to predict the strength property of geopolymer concrete", Mater., 15, 2400. https://doi.org/10.3390/ma15072400.
- Chou, J.S., Tsai, C.F., Pham, A.D. and Lu, Y.H. (2014), "Machine learning in concrete strength simulations: Multi-nation data analytics", Constr. Build. Mater., 73, 771-780. https://doi.org/10.1016/j.conbuildmat.2014.09.054.
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21, 463-470. https://doi.org/10.12989/cac.2018.21.4.463.
- Feng, D.C., Liu, Z.T., Wang, X.D., Chen, Y., Chang, J.Q., Wei, D.F. and Jiang, Z.M. (2020), "Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach", Constr. Build. Mater., 230, 117000. https://doi.org/10.1016/j.conbuildmat.2019.117000.
- Garg, A., Aggarwal, P., Aggarwal, Y., Belarbi, M.O., Chalak, H.D., Tounsi, A. and Gulia, R. (2022), "Machine learning models for predicting the compressive strength of concrete containing nano silica", Comput. Concrete, 30, 33-42. https://doi.org/10.12989/cac.2022.30.1.033.
- Geurts, P., Ernst, D. and Wehenkel, L. (2006), "Extremely randomized trees", Mach. Learn., 63, 3-42. https://doi.org/10.1007/s10994-006-6226-1.
- Khan, K., Ahmad, W., Amin, M.N. and Ahmad, A. (2022), "A systematic review of the research development on the application of machine learning for concrete", Mater., 15, 4512. https://doi.org/10.3390/ma15134512.
- Li, Z., Yoon, J., Zhang, R., Rajabipour, F., Srubar III, W.V, Dabo, I. and Radlinska, A. (2022), "Machine learning in concrete science: Applications, challenges, and best practices", Comput. Mater., 8, 127. https://doi.org/10.1038/s41524-022-00810-x.
- Miladirad, K., Golafshani, E.M., Safehian, M. and Sarkar, A. (2021), "Modeling the mechanical properties of rubberized concrete using machine learning methods", Comput. Concrete, 28, 567-583. https://doi.org/10.12989/cac.2021.28.6.567.
- Nazari, A. and Sanjayan, J.G. (2015), "Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine", Ceram. Int., 41, 12164-12177. https://doi.org/10.1016/j.ceramint.2015.06.037.
- Nguyen, K.T., Nguyen, Q.D., Le, T.A., Shin, J. and Lee, K. (2020), "Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches", Constr. Build. Mater., 247, 118581. https://doi.org/10.1016/j.conbuildmat.2020.118581.
- Ozcan, G., Kocak, Y. and Gulbandilar, E. (2017), "Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models", Comput. Concrete, 9, 275-282. https://doi.org/10.12989/cac.2017.19.3.275.
- Shahmansouri, A.A., Akbarzadeh Bengar, H. and Ghanbari, S. (2020), "Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method", J. Build. Eng., 31, 101326. https://doi.org/10.1016/j.jobe.2020.101326.
- Unlu, R. (2020), "An assessment of machine learning models for slump flow and examining redundant features", Comput. Concrete, 25, 565-574. https://doi.org/https://doi.org/10.12989/cac.2020.25.6.565.
- Young, B.A., Hall, A., Pilon, L., Gupta, P. and Sant, G. (2019), "Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods", Cement Concrete Res., 115, 379-388. https://doi.org/10.1016/j.cemconres.2018.09.006.