• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.026 seconds

The Forecasting Power Energy Demand by Applying Time Dependent Sensitivity between Temperature and Power Consumption (시간대별 기온과 전력 사용량의 민감도를 적용한 전력 에너지 수요 예측)

  • Kim, Jinho;Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.129-136
    • /
    • 2019
  • In this study, we proposed a model for forecasting power energy demand by investigating how outside temperature at a given time affected power consumption and. To this end, we analyzed the time series of power consumption in terms of the power spectrum and found the periodicities of one day and one week. With these periodicities, we investigated two time series of temperature and power consumption, and found, for a given hour, an approximate linear relation between temperature and power consumption. We adopted an exponential smoothing model to examine the effect of the linearity in forecasting the power demand. In particular, we adjusted the exponential smoothing model by using the variation of power consumption due to temperature change. In this way, the proposed model became a mixture of a time series model and a regression model. We demonstrated that the adjusted model outperformed the exponential smoothing model alone in terms of the mean relative percentage error and the root mean square error in the range of 3%~8% and 4kWh~27kWh, respectively. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric energy together with the outside temperature.

Traffic Emission Modelling Using LiDAR Derived Parameters and Integrated Geospatial Model

  • Azeez, Omer Saud;Pradhan, Biswajeet;Jena, Ratiranjan;Jung, Hyung-Sup;Ahmed, Ahmed Abdulkareem
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.137-149
    • /
    • 2019
  • Traffic emissions are the main cause of environmental pollution in cities and respiratory problems amongst people. This study developed a model based on an integration of support vector regression (SVR) algorithm and geographic information system (GIS) to map traffic carbon monoxide (CO) concentrations and produce prediction maps from micro level to macro level at a particular time gap in a day in a very densely populated area (Utara-Selatan Expressway-NKVE, Kuala Lumpur, Malaysia). The proposed model comprised two models: the first model was implemented to estimate traffic CO concentrations using the SVR model, and the second model was applied to create prediction maps at different times a day using the GIS approach. The parameters for analysis were collected from field survey and remote sensing data sources such as very-high-resolution aerial photos and light detection and ranging point clouds. The correlation coefficient was 0.97, the mean absolute error was 1.401 ppm and the root mean square error was 2.45 ppm. The proposed models can be effectively implemented as decision-making tools to find a suitable solution for mitigating traffic jams near tollgates, highways and road networks.

Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes

  • Asteris, Panagiotis G.;Lemonis, Minas E.;Nguyen, Thuy-Anh;Le, Hiep Van;Pham, Binh Thai
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.471-491
    • /
    • 2021
  • In this study, we estimate the ultimate load of rectangular concrete-filled steel tubes (CFST) by developing a novel hybrid predictive model (ANN-BCMO) which is a combination of balancing composite motion optimization (BCMO) - a very new optimization technique and artificial neural network (ANN). For this aim, an experimental database consisting of 422 datasets is used for the development and validation of the ANN-BCMO model. Variables in the database are related with the geometrical characteristics of the structural members, and the mechanical properties of the constituent materials (steel and concrete). Validation of the hybrid ANN-BCMO model is carried out by applying standard statistical criteria such as root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE). In addition, the selection of appropriate values for parameters of the hybrid ANN-BCMO is conducted and its robustness is evaluated and compared with the conventional ANN techniques. The results reveal that the new hybrid ANN-BCMO model is a promising tool for prediction of the ultimate load of rectangular CFST, and prove the effective role of BCMO as a powerful algorithm in optimizing and improving the capability of the ANN predictor.

Prediction of concrete spall damage under blast: Neural approach with synthetic data

  • Dauji, Saha
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.533-546
    • /
    • 2020
  • The prediction of spall response of reinforced concrete members like columns and slabs have been attempted by earlier researchers with analytical solutions, as well as with empirical models developed from data generated from physical or numerical experiments, with different degrees of success. In this article, compared to the empirical models, more versatile and accurate models are developed based on model-free approach of artificial neural network (ANN). Synthetic data extracted from the results of numerical experiments from literature have been utilized for the purpose of training and testing of the ANN models. For two concrete members, namely, slabs and columns, different sets of ANN models were developed, each of which proved to have definite advantages over the corresponding empirical model reported in literature. In case of slabs, for all three categories of spall, the ANN model results were superior to the empirical models as evaluated by the various performance metrics, such as correlation, root mean square error, mean absolute error, maximum overestimation and maximum underestimation. The ANN models for each category of column spall could handle three variables together: namely, depth, spacing of longitudinal and transverse reinforcement, as contrasted to the empirical models that handled one variable at a time, and at the same time yielded comparable performance. The application of the ANN models for spall prediction of concrete slabs and columns developed in this study has been discussed along with their limitations.

Predicting the splitting tensile strength of concrete using an equilibrium optimization model

  • Zhao, Yinghao;Zhong, Xiaolin;Foong, Loke Kok
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.81-93
    • /
    • 2021
  • Splitting tensile strength (STS) is an important mechanical parameter of concrete. This study offers novel methodologies for the early prediction of this parameter. Artificial neural network (ANN), which is a leading predictive method, is synthesized with two metaheuristic algorithms, namely atom search optimization (ASO) and equilibrium optimizer (EO) to achieve an optimal tuning of the weights and biases. The models are applied to data collected from the published literature. The sensitivity of the ASO and EO to the population size is first investigated, and then, proper configurations of the ASO-NN and EO-NN are compared to the conventional ANN. Evaluating the prediction results revealed the excellent efficiency of EO in optimizing the ANN. Accuracy improvements attained by this algorithm were 13.26 and 11.41% in terms of root mean square error and mean absolute error, respectively. Moreover, it raised the correlation from 0.89958 to 0.92722. This is while the results of the conventional ANN were slightly better than ASO-NN. The EO was also a faster optimizer than ASO. Based on these findings, the combination of the ANN and EO can be an efficient non-destructive tool for predicting the STS.

Strength and strain modeling of CFRP -confined concrete cylinders using ANNs

  • Ozturk, Onur
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.225-239
    • /
    • 2021
  • Carbon fiber reinforced polymer (CFRP) has extensive use in strengthening reinforced concrete structures due to its high strength and elastic modulus, low weight, fast and easy application, and excellent durability performance. Many studies have been carried out to determine the performance of the CFRP confined concrete cylinder. Although studies about the prediction of confined compressive strength using ANN are in the literature, the insufficiency of the studies to predict the strain of confined concrete cylinder using ANN, which is the most appropriate analysis method for nonlinear and complex problems, draws attention. Therefore, to predict both strengths and also strain values, two different ANNs were created using an extensive experimental database. The strength and strain networks were evaluated with the statistical parameters of correlation coefficients (R2), root mean square error (RMSE), and mean absolute error (MAE). The estimated values were found to be close to the experimental results. Mathematical equations to predict the strength and strain values were derived using networks prepared for convenience in engineering applications. The sensitivity analysis of mathematical models was performed by considering the inputs with the highest importance factors. Considering the limit values obtained from the sensitivity analysis of the parameters, the performances of the proposed models were evaluated by using the test data determined from the experimental database. Model performances were evaluated comparatively with other analytical models most commonly used in the literature, and it was found that the closest results to experimental data were obtained from the proposed strength and strain models.

ResNet-Based Simulations for a Heat-Transfer Model Involving an Imperfect Contact

  • Guangxing, Wang;Gwanghyun, Jo;Seong-Yoon, Shin
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.303-308
    • /
    • 2022
  • Simulating the heat transfer in a composite material is an important topic in material science. Difficulties arise from the fact that adjacent materials cannot match perfectly, resulting in discontinuity in the temperature variables. Although there have been several numerical methods for solving the heat-transfer problem in imperfect contact conditions, the methods known so far are complicated to implement, and the computational times are non-negligible. In this study, we developed a ResNet-type deep neural network for simulating a heat transfer model in a composite material. To train the neural network, we generated datasets by numerically solving the heat-transfer equations with Kapitza thermal resistance conditions. Because datasets involve various configurations of composite materials, our neural networks are robust to the shapes of material-material interfaces. Our algorithm can predict the thermal behavior in real time once the networks are trained. The performance of the proposed neural networks is documented, where the root mean square error (RMSE) and mean absolute error (MAE) are below 2.47E-6, and 7.00E-4, respectively.

PSO based neural network to predict torsional strength of FRP strengthened RC beams

  • Narayana, Harish;Janardhan, Prashanth
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.635-642
    • /
    • 2021
  • In this paper, soft learning techniques are used to predict the ultimate torsional capacity of Reinforced Concrete beams strengthened with Fiber Reinforced Polymer. Soft computing techniques, namely Artificial Neural Network, trained by various back propagation algorithms, and Particle Swarm Optimization (PSO) algorithm, have been used to model and predict the torsional strength of Reinforced Concrete beams strengthened with Fiber Reinforced Polymer. The performance of each model has been evaluated by using statistical parameters such as coefficient of determination (R2), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The hybrid PSO NN model resulted in an R2 of 0.9292 with an RMSE of 5.35 for training and an R2 of 0.9328 with an RMSE of 4.57 for testing. Another model, ANN BP, produced an R2 of 0.9125 with an RMSE of 6.17 for training and an R2 of 0.8951 with an RMSE of 5.79 for testing. The results of the PSO NN model were in close agreement with the experimental values. Thus, the PSO NN model can be used to predict the ultimate torsional capacity of RC beams strengthened with FRP with greater acceptable accuracy.

Application of Response Surface Methodology and Plackett Burman Design assisted with Support Vector Machine for the Optimization of Nitrilase Production by Bacillus subtilis AGAB-2

  • Ashish Bhatt;Darshankumar Prajapati;Akshaya Gupte
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.69-82
    • /
    • 2023
  • Nitrilases are a hydrolase group of enzymes that catalyzes nitrile compounds and produce industrially important organic acids. The current objective is to optimize nitrilase production using statistical methods assisted with artificial intelligence (AI) tool from novel nitrile degrading isolate. A nitrile hydrolyzing bacteria Bacillus subtilis AGAB-2 (GenBank Ascension number- MW857547) was isolated from industrial effluent waste through an enrichment culture technique. The culture conditions were optimized by creating an orthogonal design with 7 variables to investigate the effect of the significant factors on nitrilase activity. On the basis of obtained data, an AI-driven support vector machine was used for the fitted regression, which yielded new sets of predicted responses with zero mean error and reduced root mean square error. The results of the above global optimization were regarded as the theoretical optimal function conditions. Nitrilase activity of 9832 ± 15.3 U/ml was obtained under optimized conditions, which is a 5.3-fold increase in compared to unoptimized (1822 ± 18.42 U/ml). The statistical optimization method involving Plackett Burman Design and Response surface methodology in combination with an AI tool created a better response prediction model with a significant improvement in enzyme production.

Prediction of California bearing ratio (CBR) for coarse- and fine-grained soils using the GMDH-model

  • Mintae Kim;Seyma Ordu;Ozkan Arslan;Junyoung Ko
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.183-194
    • /
    • 2023
  • This study presents the prediction of the California bearing ratio (CBR) of coarse- and fine-grained soils using artificial intelligence technology. The group method of data handling (GMDH) algorithm, an artificial neural network-based model, was used in the prediction of the CBR values. In the design of the prediction models, various combinations of independent input variables for both coarse- and fine-grained soils have been used. The results obtained from the designed GMDH-type neural networks (GMDH-type NN) were compared with other regression models, such as linear, support vector, and multilayer perception regression methods. The performance of models was evaluated with a regression coefficient (R2), root-mean-square error (RMSE), and mean absolute error (MAE). The results showed that GMDH-type NN algorithm had higher performance than other regression methods in the prediction of CBR value for coarse- and fine-grained soils. The GMDH model had an R2 of 0.938, RMSE of 1.87, and MAE of 1.48 for the input variables {G, S, and MDD} in coarse-grained soils. For fine-grained soils, it had an R2 of 0.829, RMSE of 3.02, and MAE of 2.40, when using the input variables {LL, PI, MDD, and OMC}. The performance evaluations revealed that the GMDH-type NN models were effective in predicting CBR values of both coarse- and fine-grained soils.