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Abstract

Simulating the heat transfer in a composite material is an important topic in material science. Difficulties arise from the fact that

adjacent materials cannot match perfectly, resulting in discontinuity in the temperature variables. Although there have been

several numerical methods for solving the heat-transfer problem in imperfect contact conditions, the methods known so far are

complicated to implement, and the computational times are non-negligible. In this study, we developed a ResNet-type deep

neural network for simulating a heat transfer model in a composite material. To train the neural network, we generated datasets

by numerically solving the heat-transfer equations with Kapitza thermal resistance conditions. Because datasets involve various

configurations of composite materials, our neural networks are robust to the shapes of material-material interfaces. Our

algorithm can predict the thermal behavior in real time once the networks are trained. The performance of the proposed neural

networks is documented, where the root mean square error (RMSE) and mean absolute error (MAE) are below 2.47E-6, and

7.00E-4, respectively.

Index Terms: Composite material, deep learning, heat transfer, Kapitza thermal resistance, ResNet

I. INTRODUCTION

Heat transfer in composite media has been studied exten-

sively because of its importance in material science (see [1,

2] and the references therein). If the interfaces of the adja-

cent materials are in perfect contact, both the temperature

and flux variables are continuously matched along the mate-

rial interfaces. However, it is difficult to expect perfectly

matched conditions in practice, that is, in the presence of

gaps between the contacting domains, the temperatures are

discontinuous across the material interfaces. Kapitza [3]

modelled jump conditions for imperfect contact where tem-

perature jumps appear across the interface, the amounts of

which are affected by the Kapitza thermal resistance.

There have been various attempts to solve thermal transfer

problems involving imperfect conditions using finite element

methods (FEMs), see [4-6]. However, these methods are

rather complicated because the Kapitza-type interface condi-

tions must be carefully treated. In addition, simulations of

the heat transfer in composite materials cannot be obtained

in real time by FEM-based algorithms.

However, there have been huge developments in deep

learning (DL) communities (see [7-12] and the references

therein). One of the main advantages of DL-based methods

is that once the networks are trained, they can produce pre-

dictions of the target variable in real time.
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In this study, we developed a DL-based thermal simulation

for a composite material. One good aspect of the artificial

neural network (ANN)-based approach is that one can expect

real-time thermal conduction simulation once the networks

are trained. This is in contrast to conventional FEM-based

methods, whose computation times are non-negligible. Another

advantage of the proposed DL-based algorithms is that they

are robust with respect to the geometry of the material-mate-

rial interface. In fact, the inputs of the proposed DL architec-

tures are material-material interfaces. Once the geometrical

contribution of a composite material is substituted into the

algorithm, the desired prediction of the target variable (i.e.,

temperature) can be obtained in real time. This method of

obtaining solutions is more user-friendly compared to FEM-

based approaches.

To train the neural networks, we produced datasets by

numerically solving the heat equations for various configura-

tions of composite material shapes. Here, the immersed

finite element method (IFEM) [13] was used as the numeri-

cal method. For the architecture of the DL, we employed

ResNet-type [7] structures, where so-called ResBlocks with

identity maps are repeated several times. With the presence

of identity-maps in ResBlocks, one can avoid the “gradient-

vanishing” phenomenon even with a large number of layers.

The remainder of this paper is organized as follows. The

model equation and the derivation of its weak form are pre-

sented in the next section. ResNet-based neural networks are

developed in Section 3. The next section reports the perfor-

mance of ResNet-based neural networks in predicting the

solutions of heat-transfer models involving composite mate-

rials. Finally, we present our conclusions in the last section.

II. MODEL EQUATION AND DERIVATION OF 

ITS WEAK FORM

In this section, the governing equation of the model and its

derivation of a weak form are described. Consider a compos-

ite material Ω ⊂ R2 having two parts Ω = Ω1 ∪ Ω2 where Ω2

is imbedded in Ω. Here, denote Γ to be the material interface

dividing Ω1 and Ω2. The governing equation for the heat

transfer model involving the Kapitza interface condition with

a Kapitza thermal resistance α is as follows:

(1)

(2)

(3)

(4)

(5)

where nis are the outward unit normal vector to Ωi (i = 1, 2)

and nΓ = n1. Here, [·]Γ implies a jump of functions across

the interface, that is,  and = −

. Equations (1) and (2) relate the temperature (T) and

heat (q) variables by using Fick’s law. Eqs. (3) and (4)

describe the Kapitza interface conditions [3]. Finally, (5)

describes the boundary conditions. The temperature variable

in a composite material can be determined by solving Eqs.

(1)-(5).

The weak problem for (1)-(5) can be derived as follows:

For convenience, we assume that g = 0 in Eq. (5). We need

some notations. Let D be any domain in R2 and  and

 be the usual Sobolev space. Furthermore, the broken

space is defined as follows:

By multiplying a function  to (1) and (2) and by

applying integration by parts in each subdomain, we have

Here, using Kapitza interface conditions (3) and (4), the sec-

ond term of the above equation is written as follows:

Summarizing the above equations, a weak problem for (1)-

(5) is written as follows: find  such that it satisfies

(6)

Based on the weak problem (6), the IFEM is employed to

generate datasets for training the ANN.

III. METHODS

In this section, we propose ANN-based simulation meth-

ods for heat-transfer models in composite materials. In par-

ticular, ResNet-based neural networks produce an approximation

solution for the temperature variable in Eqs. (1)-(5). The

remainder of this section is organized as follows. The IFEM

for model Eqs. (1)-(5) is described in the first subsection.

The ResNet-based networks for heat transfer are described in

the following subsections.

A. Immersed Finite Element Methods Heat-Transfer 

Model

In this subsection, we propose the IFEM for heat equations
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involving imperfect contact conditions, based on [13]. Our

version of the IFEM is similar to that of [13], but a different

local space is employed. We briefly describe the methods as

follows. (details of the derivations of discrete weak problems

can be found in [13]).

Let Th be a uniform triangulation of Ω by right triangles

having an edge size h and let Fh be the set of edges of ele-

ments in Th. Let E be a typical element in Th and let Sh(E) be

set of first order polynomials in E. Assume that E is cut

through by Γ, so that : .

Because the first-order polynomials in Sh(T) are continuous,

they cannot satisfy Kapitza conditions (3) and (4). Hence,

we modify a function  to be a piecewise linear

function  satisfying the Kapitza conditions, that is,  has

the following form:

and coefficients (a1, b1, c1, a2, b2, c3) are determined to sat-

isfy Kapitza conditions as

where Xi’s are nodes of E. The set of modified functions  is

defined as . Finally, the global finite element space

 is defined as a set of functions in  satisfying:

We are now in a position to state IFEM for model equations

(1)-(5): find  satisfying

for all .

It was reported in [13] that numerical solutions obtained

by the IFEM for robo-interface condition elliptic partial dif-

ferential equations have optimal error convergences, that is,

as the mesh size is halved L2-errors are reduced by 1/4 and

H1-errors are reduced by 1/2. Although this is not the scope

of this work, similar error convergences were observed for

the IFEM defined in (7), implying that IFEM-generated solu-

tions can be used as reference solutions for a heat-transfer

model in a composite material.

B. ResNet-based Neural Networks for Heat-Transfer 

in a Composite Material

In this subsection, ResNet-based neural networks are

developed to predict the solutions (temperature variables) of

heat transfer in a composite material. First, we explain the

generation process of the datasets. We intend to develop

ANNs that are robust with respect to the geometry of embed-

ded materials. For this purpose, different interface shapes

were considered, as shown in Fig. 1. Here, interfaces were

created by perturbating circles using randomly chosen

parameters c1, c2, θ1, θ2 as below

r = r0(1 + c1sin(θ − θ1) + c2sin(2(θ − θ2))).

Here,Γ is chosen by level sets for r, i.e., Γ = {(x, y) | r(x, y)

= 0}.

The formatting of datasets of type (Xi, Yi)’s (i = 1, ...,

nSamples) are described. First, each Xi represents the shape

of the material composite, that is, we set Xi(x, y) = 1 if (x, y)

is located in Ω1 and Xi(x, y) = 0 otherwise.Yi is the point-

wise value of Th, that is, Yi(x, y) = Th(x, y). As usual, Yi is

normalized such that the values of Yi are between [0, 1]. The

process of generating data is summarized below.

1) A two-dimensional input Xi is defined to represent the

subdomains Ω1 and Ω2.

2) Next, by IFEM in (7), the numerical solution Th is

obtained. 

3) Finally, by matching the point-wise values of T , a two-

dimensional output Yi which represents the solution of

the heat equation is defined.

 The remainder of this subsection is devoted to the devel-

opment of ANNs for a heat-transfer model in a composite

material. Because the imperfect contact Kapitza resistance

model has discontinuous solutions, it requires a large number

of network parameters. To avoid the so-called gradient-van-
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Fig. 1. Examples of geometry of embedded material. Interfaces separating

material subdomains are drawn by dashed-lines.
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ishing phenomenon for deep neural networks, ResNet-type

networks [7], which accompany the concept of skip connec-

tions, were employed in this study.

We denote CONV2D(kern=n,gen=m, stride=s) as a typical

convolutional layer with n × n size filters, m number of fil-

ters, and stride size s. The idea of the residual block (Res-

Block) is to accompany an identity-map-type skip

connection between the input and outputs, that is, the input

(X) and output (Y) of ResBlock are related as

where F(X; θ) = (CONV2D · σ · CONV2D)(X) and σ is a

nonlinear activation function. Because the differentiation of

Y with respect to X always has identity maps, gradients of

errors can be back-propagated by identity maps, which pre-

vents the gradient-vanishing phenomenon. In this study, a

RELU function was employed for the activation σ. For con-

venience, the following notation is used:

RESBLOCK(kern = n, gen = m)

= (CONV2D(n,m,1) · σ · CONV2D(n,m,1))(X)+X.

Finally, a ResNet type neural network is proposed as below:

Algorithm. ResNet(m, d).

Suppose that input X is given. ResNet(m, d) was obtained

using the following process:

1) Apply down-samplings.

X = CONV2D(7,m,1)(X)→X = CONV2D(3,2m,2)(X)

→X = CONV2D(3,4m,2)(X)

→X = CONV2D(3,8m,2)(X)

2) Apply RESBLOCK d-times.

for i = 1,…, d

X = RESBLOCK(3, 8m)

end for

3) Apply up-samplings.

X = CONVT2D(3,4m,2)(X) 

→X = CONVT2D(3,2m,2)(X) 

→X = CONVT2D(3,m,2)(X) 

→ResNet(m, d) = CONVT2D(7,1,1)(X)

We note that at the down-sampling stage in the above algo-

rithm, the resolution of the data is reduced while the number

of kernels increases. Here, the total CPU time at the lower

level does not increase even when the number of filters is

doubled. In this manner, features at different resolutions can

be effectively extracted. At the lowest level, RESBLOCK

was applied d-times. Then, the feature maps were up-sam-

pled using CONVT2D. In this algorithm, there are two con-

trol parameters m and d that affect the total number of

parameters in ResNet(m,d). As m increased, the number of

filters at each stage increased. However, as d increases, the

number of layers in the networks increases. For the objective

function, the mean square errors between the IFEM-gener-

ated and ResNet-generated solutions were used.

IV. EXPERIMENT AND RESULTS

In this section, we report the performance of ResNet(m,d)

for heat transfer problems in composite materials. The

domain is Ω = [−1, 1]2 and triangulation Th is constructed by

right-triangles of size h = 2−6 resulting in 128 × 128 nodes.

The Kapitza thermal resistance constant was set to α = 0.2.

As for the boundary condition, we set g = 1 on the left side

of Ω and g = 0 on the right side of Ω. Also, a homogeneous

source term is assumed, that is, f = 0 in (2). Note that our

methods perform similarly for different parameter settings.

A dataset containing 10,000 IFEM generated solutions for

the heat-transfer equations involving composite materials

was used. Among these, 7000 samples were used for the

training set, 1000 samples were used for the validation set,

and 2000 samples were assigned to the test set. To train Res-

Net, an ADAM optimizer with a learning-rate parameter of

0.0002 was used for 200 epochs. ResNet(m,d), was imple-

mented by Keras on an NVIDIA RTX 3090. To find the opti-

mal parameters of ResNet(m,d), the usual root mean squared

error (RMSE) and mean absolute error (MAE) of the test

sets were compared for different cases of (m,d). Here, the

errors between the solutions generated by ResNet(m,d) and

the numerical solutions obtained by IFEM were computed.

Table 1 reports CPU time and accuracies of solutions

obtained by ResNet(m,d). Both the CPU time and number of

parameters increase as m or d increase. Among the various

versions of ResNet(m,d) ResNet(10,5) produces solutions

with the smallest RMSE and MAE. However, other choices

result in reasonably small errors, that is., RMSEs are below

3E-6 and MAEs are below 7E-4 for all cases. Evolutions of

RMSE and MAE with respect to increasing epoch numbers

are plotted in Fig. 2 for the case of ResNet(10,5). Here, both

RMSE and MAE are decreasing stably.

The temperature variables predicted by ResNet(10,5) for

heat-transfer problems with different composite material

shapes are plotted in Fig. 3. Here, it is observed that the tem-

peratures are discontinuous near the material-material inter-

Y F X θ;( ) X+=

Table 1. A comparison of ResNet(m,d) with respect to parameters (m,d) in

terms of accuracies, total number of parameters, and CPU time

(m,d) RMSE MAE CPU time (s) Parameters

(5,5) 1.71E-6 6.99E-4 1,258 163,901

(5,10) 2.46E-6 6.08E-4 1,696 308,301

(5,15) 2.28E-6 6.18E-4 2,050 452,701

(10,5) 8.18E-7 4.77E-4 1,1378 653,601

(10,10) 1.39E-6 6.57E-4 2,216 1,230,401

 (10,15) 1.91E-6 5.63E-4 2,755 1,807,201
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faces. Indeed, owing to gaps between the two materials,

there are relatively small temperature drops in the embedded

material, which coincides with the phenomena observed in

[5].

V. CONCLUSION

In this study, we developed new algorithms to predict the

solutions of heat-transfer models in composite materials.

First, datasets were generated by solving heat-transfer equa-

tions numerically, and the IFEM was adopted for the imple-

mentation. To develop neural networks that are robust to the

shapes of material subdomains, various geometries of mate-

rial-material interfaces were considered in the datasets. Once

the datasets were generated, we trained the ResNet-type neu-

ral networks, which we named ResNet(m,d). The results

showed that the RMSEs were below 3E-6 and the MAEs

were below 7E-4. In addition, the discontinuity of tempera-

ture variables were described by ResNet(m,d) in a reasonable

manner.
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