• Title/Summary/Keyword: root-mean-square error

Search Result 1,242, Processing Time 0.037 seconds

Retrieval of Oceanic Skin Sea Surface Temperature using Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) Radiance Measurements (적외선 라디오미터 관측 자료를 활용한 해양 피층 수온 산출)

  • Kim, Hee-Young;Park, Kyung-Ae
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.617-629
    • /
    • 2020
  • Sea surface temperature (SST), which plays an important role in climate change and global environmental change, can be divided into skin sea surface temperature (SSST) observed by satellite infrared sensors and the bulk temperature of sea water (BSST) measured by instruments. As sea surface temperature products distributed by many overseas institutions represent temperatures at different depths, it is essential to understand the relationship between the SSST and the BSST. In this study, we constructed an observation system of infrared radiometer onboard a marine research vessel for the first time in Korea to measure the SSST. The calibration coefficients were prepared by performing the calibration procedure of the radiometer device in the laboratory prior to the shipborne observation. A series of processes were applied to calculate the temperature of the layer of radiance emitted from the sea surface as well as that from the sky. The differences in skin-bulk temperatures were investigated quantitatively and the characteristics of the vertical structure of temperatures in the upper ocean were understood through comparison with Himawari-8 geostationary satellite SSTs. Comparison of the skin-bulk temperature differences illustrated overall differences of about 0.76℃ at Jangmok port in the southern coast and the offshore region of the eastern coast of the Korean Peninsula from 21 April to May 6, 2020. In addition, the root-mean-square error of the skin-bulk temperature differences showed daily variation from 0.6℃ to 0.9℃, with the largest difference of 0.83-0.89℃ at 1-3 KST during the daytime and the smallest difference of 0.59℃ at 15 KST. The bias also revealed clear diurnal variation at a range of 0.47-0.75℃. The difference between the observed skin sea surface temperature and the satellite sea surface temperature showed a mean square error of approximately 0.74℃ and a bias of 0.37℃. The analysis of this study confirmed the difference in the skin-bulk temperatures according to the observation depth. This suggests that further ocean shipborne infrared radiometer observations should be carried out continuously in the offshore regions to understand diurnal variation as well as seasonal variations of the skin-bulk SSTs and their relations to potential causes.

Validation of Satellite SMAP Sea Surface Salinity using Ieodo Ocean Research Station Data (이어도 해양과학기지 자료를 활용한 SMAP 인공위성 염분 검증)

  • Park, Jae-Jin;Park, Kyung-Ae;Kim, Hee-Young;Lee, Eunil;Byun, Do-Seong;Jeong, Kwang-Yeong
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.469-477
    • /
    • 2020
  • Salinity is not only an important variable that determines the density of the ocean but also one of the main parameters representing the global water cycle. Ocean salinity observations have been mainly conducted using ships, Argo floats, and buoys. Since the first satellite salinity was launched in 2009, it is also possible to observe sea surface salinity in the global ocean using satellite salinity data. However, the satellite salinity data contain various errors, it is necessary to validate its accuracy before applying it as research data. In this study, the salinity accuracy between the Soil Moisture Active Passive (SMAP) satellite salinity data and the in-situ salinity data provided by the Ieodo ocean research station was evaluated, and the error characteristics were analyzed from April 2015 to August 2020. As a result, a total of 314 match-up points were produced, and the root mean square error (RMSE) and mean bias of salinity were 1.79 and 0.91 psu, respectively. Overall, the satellite salinity was overestimated compare to the in-situ salinity. Satellite salinity is dependent on various marine environmental factors such as season, sea surface temperature (SST), and wind speed. In summer, the difference between the satellite salinity and the in-situ salinity was less than 0.18 psu. This means that the accuracy of satellite salinity increases at high SST rather than at low SST. This accuracy was affected by the sensitivity of the sensor. Likewise, the error was reduced at wind speeds greater than 5 m s-1. This study suggests that satellite-derived salinity data should be used in coastal areas for limited use by checking if they are suitable for specific research purposes.

Development of a predictive model describing the growth of Staphylococcus aureus in processed meat product galbitang (식육추출가공품 중 갈비탕에서의 Staphylococcus aureus 성장예측모델 개발)

  • Son, Na-Ry;Kim, An-Na;Choi, Won-Seok;Yoon, Sang-Hyun;Suh, Soo-Hwan;Joo, In-Sun;Kim, Soon-Han;Kwak, Hyo-Sun;Cho, Joon-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.274-278
    • /
    • 2017
  • In this study, predictive mathematical models were developed to estimate the kinetics of Staphylococcus aureus growth in processed meat product galbitang. Processed meat product galbitang was inoculated with 0.1 mL of S. aureus culture and stored at 4, 10, 20, $37^{\circ}C$. The ${\mu}_{max}$ (maximum specific growth rate) and LPD (lag phase duration) values were calculated. The primary model was used to develop a response surface secondary model. The growth parameters were analyzed using the square root model as a function of storage temperature. The developed model was confirmed by calculating RMSE (Root Mean Square Error) values as statistic parameters. The LPD decreased, but ${\mu}_{max}$ increased with an increase in the storage temperature. At 4, 10, 20 and $37^{\circ}C$, $R^2$ was 0.99, 0.98, 0.99 and 0.99, respectively; RMSE was 0.39. The developed predictive growth model can be used to predict the risk of S. aureus contamination in processed meat product galbitang; hence, it has potential as an input model for the risk assessment.

Parameter Estimation of Coastal Water Quality Model Using the Inverse Theory (역산이론을 이용한 연안 수질모형의 매개변수 추정)

  • Cho, Hong-Yeon;Cho, Bum-Jun;Jeong, Shin-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.149-157
    • /
    • 2005
  • Typical water quality (WQ) parameters defined in the governing equation of the WQ model are the pollutant loads from atmosphere and watersheds, pollutant release rates from sediment, diffusion coefficient and reaction coefficient etc. The direct measurement of these parameters is very difficult as well as requires high cost. In this study, the pollutant budget equation including these parameters was used to construct the linear simultaneous equations. Based on these equations, the inverse problems were constructed and WQ parameter estimation method minimizing the sum of squared errors between the computed and observed amounts of the mass changes was suggested. WQ parameters, i.e., the atmospheric pollutant loads, sediment release rates, diffusion coefficients and reaction coefficient, were estimated using .this method by utilizing the vertical concentration profile data which has been observed in Cheonsu Bay and Ulsan Port. Values of the estimated parameters show a large temporal variation. However, this technique is persuasive in that the RHS (root mean square) error was less than $5.0\%$ of the observed value ranges and the agreement index was greater than 0.95.

Prediction of Shear Wave Velocity on Sand Using Standard Penetration Test Results : Application of Artificial Neural Network Model (표준관입시험결과를 이용한 사질토 지반의 전단파속도 예측 : 인공신경망 모델의 적용)

  • Kim, Bum-Joo;Ho, Joon-Ki;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.47-54
    • /
    • 2014
  • Although shear wave velocity ($V_s$) is an important design factor in seismic design, the measurement is not usually made in typical field investigation due to time and economic limitations. In the present study, an investigation was made to predict sand $V_s$ based on the standard penetration test (SPT) results by using artificial neural network (ANN) model. A total of 650 dataset composed of SPT-N value ($N_{60}$), water content, fine content, specific gravity for input data and $V_s$ for output data was used to build and train the ANN model. The sensitivity analysis was then performed for the trained ANN to examine the effect of the input variables on the $V_s$. Also, the ANN model was compared with seven existing empirical models on the performance. The sensitivity analysis results revealed that the effect of the SPT-N value on $V_s$ is significantly greater compared to other input variables. Also, when compared with the empirical models using Nash-Sutcliffe Model Efficiency Coefficient (NSE) and Root Mean Square Error (RMSE), the ANN model was found to exhibit the highest prediction capability.

Estimating the Spatial Distribution of Rumex acetosella L. on Hill Pasture using UAV Monitoring System and Digital Camera (무인기와 디지털카메라를 이용한 산지초지에서의 애기수영 분포도 제작)

  • Lee, Hyo-Jin;Lee, Hyowon;Go, Han Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.365-369
    • /
    • 2016
  • Red sorrel (Rumex acetosella L.), as one of exotic weeds in Korea, was dominated in grassland and reduced the quality of forage. Improving current pasture productivity by precision management requires practical tools to collect site-specific pasture weed data. Recent development in unmanned aerial vehicle (UAV) technology has offered cost effective and real time applications for site-specific data collection. To map red sorrel on a hill pasture, we tested the potential use of an UAV system with digital cameras (visible and near-infrared (NIR) camera). Field measurements were conducted on grazing hill pasture at Hanwoo Improvement Office, Seosan City, Chungcheongnam-do Province, Korea on May 17, 2014. Plant samples were obtained at 20 sites. An UAV system was used to obtain aerial photos from a height of approximately 50 m (approximately 30 cm spatial resolution). Normalized digital number values of Red, Green, Blue, and NIR channels were extracted from aerial photos. Multiple linear regression analysis results showed that the correlation coefficient between Rumex content and 4 bands of UAV image was 0.96 with root mean square error of 9.3. Therefore, UAV monitoring system can be a quick and cost effective tool to obtain spatial distribution of red sorrel data for precision management of hilly grazing pasture.

Rice Yield Estimation of South Korea from Year 2003-2016 Using Stacked Sparse AutoEncoder (SSAE 알고리즘을 통한 2003-2016년 남한 전역 쌀 생산량 추정)

  • Ma, Jong Won;Lee, Kyungdo;Choi, Ki-Young;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.631-640
    • /
    • 2017
  • The estimation of rice yield affects the income of farmers as well as the fields related to agriculture. Moreover, it has an important effect on the government's policy making including the control of supply demand and the price estimation. Thus, it is necessary to build the crop yield estimation model and from the past, many studies utilizing empirical statistical models or artificial neural network algorithms have been conducted through climatic and satellite data. Presently, scientists have achieved successful results with deep learning algorithms in the field of pattern recognition, computer vision, speech recognition, etc. Among deep learning algorithms, the SSAE (Stacked Sparse AutoEncoder) algorithm has been confirmed to be applicable in the field of forecasting through time series data and in this study, SSAE was utilized to estimate the rice yield in South Korea. The climatic and satellite data were used as the input variables and different types of input data were constructed according to the period of rice growth in South Korea. As a result, the combination of the satellite data from May to September and the climatic data using the 16 day average value showed the best performance with showing average annual %RMSE (percent Root Mean Square Error) and region %RMSE of 7.43% and 7.16% that the applicability of the SSAE algorithm could be proved in the field of rice yield estimation.

Experiments of Individual Tree and Crown Width Extraction by Band Combination Using Monthly Drone Images (월별 드론 영상을 이용한 밴드 조합에 따른 수목 개체 및 수관폭 추출 실험)

  • Lim, Ye Seul;Eo, Yang Dam;Jeon, Min Cheol;Lee, Mi Hee;Pyeon, Mu Wook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.67-74
    • /
    • 2016
  • Drone images with high spatial resolution are emerging as an alternative to previous studies with extraction limits in high density forests. Individual tree in the dense forests were extracted from drone images. To detect the individual tree extracted through the image segmentation process, the image segmentation results were compared between the combination of DSM and all R,G,B band and the combination of DSM and R,G,B band separately. The changes in the tree density of a deciduous forest was experimented by time and image. Especially the image of May when the forests are dense, among the images of March, April, May, the individual tree extraction rate based on the trees surveyed on the site was 50%. The analysis results of the width of crown showed that the RMSE was less than 1.5m, which was the best result. For extraction of the experimental area, the two sizes of medium and small trees were extracted, and the extraction accuracy of the small trees was higher. The forest tree volume and forest biomass could be estimated if the tree height is extracted based on the above data and the DBH(diameter at breast height) is estimated using the relational expression between crown width and DBH.

Applicability Assessment of Hydrological Drought Outlook Using ESP Method (ESP 기법을 이용한 수문학적 가뭄전망의 활용성 평가)

  • Son, Kyung Hwan;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.581-593
    • /
    • 2015
  • This study constructs the drought outlook system using ESP(Ensemble Streamflow Prediction) method and evaluates its utilization for drought prediction. Historical Runoff(HR) was estimated by employing LSM(Land Surface Model) and the observed meteorological, hydrological and topographical data in South Korea. Also Predicted Runoff(PR) was produced for different lead times(i.e. 1-, 2-, 3-month) using 30-year past meteorological data and the initial soil moisture condition. The HR accuracy was higher during MAM, DJF than JJA, SON, and the prediction accuracy was highly decreased after 1 month outlook. SRI(Standardized Runoff Index) verified for the feasibility of domestic drought analysis was used for drought outlook, and PR_SRI was evaluated. The accuracy of PR_SRI with lead times of 1- and 2-month was highly increased as it considered the accumulated 1- and 2-month HR, respectively. The Correlation Coefficient(CC) was 0.71, 0.48, 0.00, and Root Mean Square Error(RMSE) was 0.46, 0.76, 1.01 for 1-, 2- and 3-month lead times, respectively, and the accuracy was higher in arid season. It is concluded that ESP method is applicable to domestic drought prediction up to 1- and 2-month lead times.

Inter-basin water transfer modeling from Seomjin river to Yeongsan river using SWAT (SWAT을 이용한 섬진강에서 영산강으로의 유역간 물이동 모델링)

  • Kim, Yong Won;Lee, Ji Wan;Woo, So Young;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.57-70
    • /
    • 2020
  • This study is to establish the situation of inter-basin transfer from Seomjin river basin to Yeongsan river basin using SWAT (Soil and Water Assessment Tool). Firstly, the SWAT modeling was conducted for each river basin. After, the inter-basin transfer was established using SWAT reservoir operating parameters WURESN (Water Use Reservoir Withdrawn) and inlet function from Juam dam of Seomjin river basin to Gwangju stream of Yeongsan river basin respectively. Each river basin was calibrated and validated using 13 years (2005~2017) data of Seomjin- Juam dam reservoir storage (JAD), release, transfer and Yeongsan-Mareuk (MR) stream gauge station. The results of root mean square error RMSE, Nash-Sutcliffe efficiency NSE, and determination coefficient R2 of JAD were 2.22 mm/day, 0.62 and 0.86 respectively. The RMSE, NSE, and R2 of MR were 1.38 mm/day, 0.69 and 0.84 respectively. To evaluate the downstream effects by the transferred water, the water levels of 2 multi-function weirs (SCW, JSW) in Yeongsan river basin and the Gokseong (GS) and Gurye (GR) stream gauge stations in Seomjin river basin were also calibrated. The RMSE, NSE, and R2 of SCW, JSW, GS and GR were 1.49~2.49 mm/day, 0.45~0.76, 0.81~0.90 respectively.