DOI QR코드

DOI QR Code

Prediction of Shear Wave Velocity on Sand Using Standard Penetration Test Results : Application of Artificial Neural Network Model

표준관입시험결과를 이용한 사질토 지반의 전단파속도 예측 : 인공신경망 모델의 적용

  • Received : 2013.12.31
  • Accepted : 2014.03.05
  • Published : 2014.05.31

Abstract

Although shear wave velocity ($V_s$) is an important design factor in seismic design, the measurement is not usually made in typical field investigation due to time and economic limitations. In the present study, an investigation was made to predict sand $V_s$ based on the standard penetration test (SPT) results by using artificial neural network (ANN) model. A total of 650 dataset composed of SPT-N value ($N_{60}$), water content, fine content, specific gravity for input data and $V_s$ for output data was used to build and train the ANN model. The sensitivity analysis was then performed for the trained ANN to examine the effect of the input variables on the $V_s$. Also, the ANN model was compared with seven existing empirical models on the performance. The sensitivity analysis results revealed that the effect of the SPT-N value on $V_s$ is significantly greater compared to other input variables. Also, when compared with the empirical models using Nash-Sutcliffe Model Efficiency Coefficient (NSE) and Root Mean Square Error (RMSE), the ANN model was found to exhibit the highest prediction capability.

전단파 속도는 내진설계시 중요한 설계인자이나 지반조사의 목적으로는 흔히 경제적, 시간적 제약 등으로 시험을 통한 측정이 널리 이루어지지 않고 있다. 본 연구에서는 인공신경망 기법을 이용하여 가장 일반적인 현장 지반조사시험인 표준관입시험 결과를 바탕으로 사질토 지반에서의 전단파 속도를 예측하는 연구를 수행하였다. 650개 데이터 세트를 이용해 표준관입시험 저항치 $N_{60}$, 함수비, 세립분함량, 비중을 입력변수로 하여 전단파속도를 추정하는 인공신경망 모델을 구축하고 입력변수별 전단파속도에 미치는 영향을 민감도 해석을 통해 조사하였다. 그리고, 기존의 국내 외 7개의 표준관입시험을 이용한 전단파속도 예측 경험식들과 인공신경망에 의한 결과를 비교하였다. 민감도 분석결과 표준관입시험 저항치의 영향이 월등히 큰 것으로 나타났으며, 모델효율계수와 평균제곱근오차를 사용하여 기존의 경험식들과 인공신경망 모델의 예측 능력을 비교한 결과 인공신경망 모델의 예측 결과가 가장 좋은 것으로 나타났다.

Keywords

References

  1. Ahn, J. P., Kim, I. G., and Heo, H. G. (2009), "The Comparison Study on Assessment Method of Stability in Soil Slopes", Korean Society of Civil Engineering Conference, pp.890-893.
  2. Chan, W. T., Chow, Y. K., and Liu, L. F. (1995), "Neural network: An alternative to pile driving formulas", Journal of Computers and Geotechnics, No.17, pp.135-156. https://doi.org/10.1016/0266-352X(95)93866-H
  3. Cheong, N. H. (2009), Behavior of Shear Wave Velocity Based on Suspension PS Logging Tests, Ph.D Thesis, Dankuk University, pp.20-95.
  4. Do, J. N., Hwang, P. J., Chung, S. R., and Chun B. S. (2011), "Analysis on Relation of S-wave Velocity and N Value for Stratums in Chungcheong Buk-do", Journal of Korean Geo-Environmental Society, Vol.12, No.10, pp.13-22.
  5. Dutta, S. and Shekhar, S. (1988), "Bond Rating: a Nonconservative Application of Neural Networks", IEEE International Conference on Neural Networks, Vol.2, pp.443-450.
  6. Goh, A. T. C. (1995), "Modeling Soil Correlations using Neural Networks", Journal of Computing in Civil Engineering, ASCE, Vol.9, No.4, pp.1467-1480.
  7. Goh, A. T. C. (1994), "Seismic Liquefaction Potential assessed by Neural Network", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.120, No.9, pp.1467-1480. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1467)
  8. Ho, J. K. (2014), A Study of Prediction of Soil Shear Wave Velocity Using Standard Penetration Test Results, M.s. Thesis, Dongguk University.
  9. Imai, T. and Tonouchi, K. (1982), "Correlation of N value with S-wave Velocity and Shear Modulus", Proceedings 2nd Europe Symposium on Penetration Testing, Vol.1, pp.67-72.
  10. Jafari, M. K., Asghari, A., and Rahmani, I. (1997), "Empirical Correlation between Shear Wave Velocity(Vs) and SPT-N Value for South of Tehran Soils", 4th Proceedings of International Conference on Civil Engineering, Tehran, Iran, Vol.2, pp.355-365.
  11. Kim, D. S. (2010), "Problems and Suggested Improvements in Evaluation of Earthquake Ground Motion in Korean Seismic Codes", Korea Society of Seismic Isolation and Vibration Control Technical Reports, No.12, pp.55-68.
  12. Kim, J. B. and Kim, Y. I. (2000), "The Influence of Weight Adjusting Method and the Number of Hidden Layer's Node on Neural Network's Performance", Journal of Korea Association of Information Systems, Vol.9, No.1, pp.27-44.
  13. Kim, Y.S., Jeong, H. C., Lee, S.W., and Jeong, W. S. (2006) "Prediction of Various Properties of Soft Ground Soils using Artificial Neural Network", Korean Society of Civil Engineering Conference, Vol.2003, No.10, pp.3463-3468.
  14. Korean Geotechnical Society(2009), Commentaries of Structural Foundation Design Code, Korea Geotechnical Society, certified Ministry of Land, Transport and Maritime Affairs in Korea (in Korean)
  15. Lee, I. M. and Lee, J. H. (1996), "Prediction of Pile Bearing Capacity Using Artificial Neural Network", Computers and Geotechnics, Vol.18, No.3, pp.189-200. https://doi.org/10.1016/0266-352X(95)00027-8
  16. Lee, S. H. H. (1990), "Regression Models of Shear Wave Velocities", Journal of Chinese institute of Engineering, Vol.13, pp.515-532.
  17. Lee, S. and Chang, J. W. (2006), "Evaluation of Bearing Capacity on PHC Auger-Drilled Piles Using Artificial Neural Network", Journal of the Korea institute for structural maintenance inspection, Vol.10, No.6, pp.213-221.
  18. Nash, J. E. and Sutcliffe J. V. (1970), "River flow Forecasting through Conceptual Model Part 1-A Discussion of principles", Journal of Hydrology, Vol.10, No.3, pp.398-409.
  19. Ohta, Y. and Goto, N. (1978), "Empirical Shear Wave Velocity Equation in Terms of Characteristic Soil Index", Earthquake Engineering and Structural Dynamics, Vol.6, No.2, pp.167-187. https://doi.org/10.1002/eqe.4290060205
  20. Okamoto, S., Kokusho, T., Yoshida, Y., and Kusunoki, K. (1989), "Comparison of Surface vs Subsurface Wave Source for P-S Logging in Sand Layer", Proceedings 44th Annual Conference, JSCE, Vol.3, pp.996-997.
  21. Pitilakis, K., Raptakis, D., Lontzetidis, K., Tika-Vassilikou, T., and Jongmans, D. (1999), "Geotechnical and Geophysical Description of Euro-Seistests, Using Field and Laboratory Tests, and Moderate Strong Ground Motion", Japan Earthquake Engineering, Vol.3, No.3, pp.381-409
  22. Salchenberger, L. M., Cinar, E. M., and Lash, N. A. (1992) "Neural Networks : A New Tool for Predicting Thrift Failures", Decision Sciences, Vol.23, pp.899-916. https://doi.org/10.1111/j.1540-5915.1992.tb00425.x
  23. Schmertmann, J.H. and Palacios, A. (1979), "Energy Dynamics of SPT", Journal of Geotechnical Engineering. Division, ASCE, Vol.105, No.8, pp.909-926.
  24. Shi, J. (2000), "Reducing Prediction Error by Transforming Input Data for Neural Networks", Journal of Computing in Civil Engineering, Vol.14, No.2, pp.109-116. https://doi.org/10.1061/(ASCE)0887-3801(2000)14:2(109)
  25. Shin, H. S. (2001), Neural Network Based Constitutive Models For Finite Element Analysis, Ph.D Thesis, University of Wales Swansea, pp.11-14.
  26. Sivakugan, N., Eckersley, J. D., and Li, H. (1998), "Settlement Predictions Using Neural Network", Australian Civil Engineering Transactions, CE40, pp.49-52.
  27. Stokoe, K. H., Joh, S. H., and Woods, R. D. (2004), "Some Contributions of in situ Geophysical Measurements to Solving Geotechnical Engineering problems", International Site Charac terization ISC'2 Porto, Portugal, pp.19-42.
  28. Sun C. G., Chung, C. K., and Kim, D. S. (2007), "Determination of Mean Shear Wave Velocity to the Depth of 30m Based on Shallow Shear Wave Velocity Profile", Journal of Earthquake Engineering Society of Korea, Vol.11, No.1, pp.45-57. https://doi.org/10.5000/EESK.2007.11.1.045
  29. Sun C. G., Kim, H. J., and Chung, C. K. (2007), "Deduction of Correlations between Shear Wave Velocity and Geotechnical In-situ Penetration Test Data", Journal of Earthquake Engineering Society of Korea, Vol.12, No.4, pp.1-10. https://doi.org/10.5000/EESK.2008.12.4.001
  30. Sykora, D. E. and Stokoe, K. H. (1983), "Correlations of in-situ measurements in sands of shear wave velocity", Soil Dynamics and Earthquake Engineering, pp.20-36.
  31. Terzaghi, K. and Peck, R. B. (1967), Soil Mechanics in Engineering Practice (2nd Edition), John Wiley & Sons.

Cited by

  1. Prediction Models Based on Regression and Artificial Neural Network for Moduli of Layers Constituted by Open-Graded Aggregates vol.14, pp.5, 2014, https://doi.org/10.3390/ma14051199