• Title/Summary/Keyword: rolling process

Search Result 912, Processing Time 0.025 seconds

Web Guide Process in Cold Rolling Mill : Modeling and PID Controller

  • Ahn, Byoung-Joon;Park, Ju-Yong;Chang, Yu-Shin;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1074-1085
    • /
    • 2004
  • There are many intermediate web guides in cold rolling mills process such as CRM (cold rolling mill), CGL (continuous galvanizing line), EGL (electrical galvanizing line) and so on. The main functions of the web guides are to adjust the center line of the web (strip) to the center line of the steel process. So they are called CPC (center position control). Rapid process speed cause large deviation between the center position of the strip and the process line. Too much deviation is not desirable. So the difference between the center position of the strip and the process line should be compensated. In general, the center position control of the web is obtained by the hydraulic driver and electrical controller. In this paper, we propose modelling and several controller designs for web-guide systems. We model the web and guide by using geometrical relations of the guide ignored the mass and stiffness of the web. To control the systems, we propose PID controllers with their gains tuned by the Ziegler-Nichols method, the H$\_$$\infty$/ controller model-matching method, and the coefficient diagram method (CDM). CDM is modified for high order systems. The results are verified by computer simulations.

Rigid-Plastic Finite Element Analysis of a Ring Rolling Process of the Inner Race Cage of a Constant Velocity Joint (등속조인트 인너레이스 케이지 링 압연공정의 강소성 유한요소해석)

  • Moon, H.K.;Park, J.H.;Lee, M.C.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.352-356
    • /
    • 2007
  • In this study, a rigid-plastic finite element method is applied to simulating a ring rolling process of the inner race cage of a constant velocity joint for the passengers' cars. The ring rolling process is mathematically modeled by several assumptions. The defect formation at the side ends is predicted in detail. The predictions are compared with the experiments and a good agreement is observed in terms of deformed shape.

  • PDF

Dynamic Simulation of AGC/LPC Synthetical System for Hot Strip Finishing Mill

  • Wang, Xiaoying;Wang, Jingcheng
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.24-30
    • /
    • 2008
  • A simulation of hot strip finishing mill automatic gauge control (AGC) system is built, which is divided into four modules such as rolling mill system, AGC module, looper system and strip model. The rolling mill system is built by mechanism modeling, the looper system and strip model are built by function modeling, and the AGC model is tried to use intelligent control of a multi-function AGC system. The target is attempted to use this simulation object to minimize finisher exit strip thickness deviation resulting from strip entry thickness disturbance and rolling force deviation. Simulation results show that the result of this AGC/LPC synthetical system module simulation is quite close to the actual result. The simulation system can also analyze most kinds of disturbance which affect the rolling process. It is proved that the system can represent practical situation of hot strip finishing mill process control, and be used as a basic platform of research and development for researcher and engineer.

The effect of thread rolling process parameters on the quality of large stud bolts (대형 스터드 볼트의 나사부 품질에 미치는 전조 공정 변수의 영향)

  • Kwon, I.K.;Yoon, Y.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.341-344
    • /
    • 2006
  • Finite element analysis and verification experiments were performed in order to find cause of defects such as folding and improper radius around the root area of the thread rolled stud bolts. Thread rolling experiments under several conditions were also carried out to understand the effect of process parameters, such as the rotation speed of the dies and the hardness of the work pieces, on the product quality. Folding defects at the top of thread are attributed to the higher hardness of the work piece and higher rotation speed of the rolling die. It was also found that the radius of screw mainly determined by the radius of the die.

  • PDF

A Study on the Fault Diagnosis of Roll-shape and Fault Tolerant Tension Control in a Continuous Process Systems (롤 형상 이상진단 및 이상극복 장력제어에 관한 연구)

  • 이창우;신기현;강현규;김광용;최승갑;박철재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.963-968
    • /
    • 2003
  • The continuous process systems usually consists of various components: driven rollers. idle rolls, load-cell and so on. Even a simple fault in a single component in the line may cause a catastrophic damage on the final products. Therefore it is absolutely necessary to diagnosis the components of the continuous systems. In this paper, an adaptive eccentricity compensation method is presented. And a new diagnosis method for transverse roll shape defects on rolling process is developed. The new method was induced from analyzing the rolling mechanism by using rolling force model, tension model, Hitchcock's equation, and measured delivery thickness of materials etc. Computer simulation results also show that the proposed diagnosis methods is very effective in the diagnosis of 3-D roll shape

  • PDF

Finite element analysis of strip rolling process using distributive parallel algorithm (평판압연공정 유한요소해석의 분산병렬처리에 관한 연구)

  • Gwon, Kie-Chan;Youn, Sung-Kie
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2096-2105
    • /
    • 1997
  • A parallel approach using a network of engineering workstations is presented for the efficient computation in the elastoplastic analysis of strip rolling process. The domain decomposition method coupled with the frontal solver for elimination of internal degrees of freedom in each subdomain is used. PVM is used for message passing and synchronization between processors. A 2-D plane strain problem and the strip rolling process are analyzed to demonstrate the performance of the algorithm and factors that have a great effect on efficiency are discussed. In spite of much communication time on the network the result illustrates the advantages of this parallel algorithm over its corresponding sequential algorithm.

The Elasto-Plastic Finite Element Analysis of Ductile Fracture in Shape Rolling (형상압연시 연성파괴의 탄소성 유한요소해석)

  • 원영목;오규환
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.72-80
    • /
    • 1996
  • During the shape rolling process the influence of reduction ration and taper of shape roller on deformation and limit of ductile fracture such as free surface cracks developing in the workpiece has been studied. The deformation behaviours were analyzed by the 3-dimensional elasto-pastic finite element method and the conditions of ductile fracture were determined from 3-dimensional elasto-plastic finite element method and modified Cockrogt-Latham criterion. The deformed geometry and prediction of ductile fracture by 3-dimensional elasto-plastic finite element method are compared with experimental results The calcuated results are in good agreements with experimental data. The analysis used in the study was found to be effective in predicting the shape rolling process.

  • PDF

Numerical Study on Defect Analysis of Hot Cross Wedge Rolling Process (열간전조공정의 공정결함 분석을 위한 해석적 연구)

  • Lee, Hyoung Wook
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.17-21
    • /
    • 2013
  • Hot cross wedge rolling process as an incremental forming has many advantages such as the material usage, the short process time, the automatic equipment line and the low forming load. However, it occurs some defects such as the surface groove, the axis warping and the Mannesmann hole. In this paper, the defect of the Mannesmann hole was carried out. Finite element analysis was utilized to reveal the stress distribution, the rotation of the specimen and the change of section profile. Cross wedge rolling experiment was also conducted on the generation of the Mannesmann hole. It was demonstrated according to the spreading angle with respect to the various types of material. In the view point of metal flow, the smaller forming angle and the larger spreading angle increase opportunities of the defect hole generations.

  • PDF

Work Roll Diagnosis by Roll Life Prediction Model in Hot Rolling Process (Roll 수명예측모델에 의한 열연작업롤 진단)

  • Bae, Yong-Hwan;Jang, Sam-Kyu;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.69-80
    • /
    • 1993
  • It is important to prevent roll failure in hot rolling process for reducing maintenance coat and production loss. Roll material and rolling conditions such as the roll force and torque have been intensively investigated to overcome the roll failures. In this study, a computer roll life prediction system under working condition is developed and evaluated on IBM-PC level. The system is composed and fatigue estimation models which are stress analysis, crack propagation, wear and fatigue estimation. Roll damage can be predicted by calculating the stress anplification, crack depth propagation and fatigue level in the roll using this computer model. The developed system is applied to a work roll in actual hot rolling process for reliability evaluation. Roll failures can be diagnosed and the propriety of current working condition can be determined through roll life prediction simulation.

  • PDF