• Title/Summary/Keyword: rolling conditions

Search Result 494, Processing Time 0.026 seconds

An analysis of Electro-Optical Camera (EOC) on KOMPSAT-1 during mission life of 3 years

  • Baek Hyun-Chul;Yong Sang-Soon;Kim Eun-Kyou;Youn Heong-Sik;Choi Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.512-514
    • /
    • 2004
  • The Electro-Optical Camera (EOC) is a high spatial resolution, visible imaging sensor which collects visible image data of the earth's sunlit surface and is the primary payload on KOMPSAT-l. The purpose of the EOC payload is to provide high resolution visible imagery data to support cartography of the Korean Peninsula. The EOC is a push broom-scanned sensor which incorporates a single nadir looking telescope. At the nominal altitude of 685Km with the spacecraft in a nadir pointing attitude, the EOC collects data with a ground sample distance of approximately 6.6 meters and a swath width of around 17Km. The EOC is designed to operate with a duty cycle of up to 2 minutes (contiguous) per orbit over the mission lifetime of 3 years with the functions of programmable gain/offset. The EOC has no pointing mechanism of its own. EOC pointing is accomplished by right and left rolling of the spacecraft, as needed. Under nominal operating conditions, the spacecraft can be rolled to an angle in the range from +/- 15 to 30 degrees to support the collection of stereo data. In this paper, the status of EOC such as temperature, dark calibration, cover operation and thermal control is checked and analyzed by continuously monitored state of health (SOH) data and image data during the mission life of 3 years. The aliveness of EOC and operation continuation beyond mission life is confirmed by the results of the analysis.

  • PDF

Ship sewage treatment using Sequencing Batch Reactor (Bacillus sp.를 이용한 연속 회분식 반응장치에서 선박 오ㆍ폐수처리)

  • Park, Sang-Ho;Kim, In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • There have been several problems in treating shipbard sewage due to special environmental conditions of ship, such as limited space, rolling and pitching, change of temperature and so on It was suggested that Sequence Batch Reactor (SBR) might be suitable process for overcome these problems in terms of small size, high capacity of treating wastewater and full automation. In this study a SBR process was employed for biological treatment of organic wastes in the shipboard sewage. This process was able to remove nitrogen and phosphorus as well as organic matter efficiently. Afore than 95% of chemical oxygen demand(COD) were removed. In addition, about 97% of total nitrogen (T-N) was reduced. The total phosphorus(T-P) reduction averaged 93%. A disturbance operation caused by the treatment of Methylene Blue Active Substances(MBAS) was not observed.

Development and Evaluation of the Attrition Coupled Bioreactors for Enzymatic Hydrolysis of Biomass ; Tumbling-Drum Type Bioreactor for Enzymatic Hydrolysis of Cellulose (Biomass의 고효율 효소당화에 적합한 Attrition Coupled Bioreactor 개발에 관한 연구 ; Tumbling Drum Type Bioreactor를 활용한 섬유소 당화)

  • 이용현;조구형;박진서
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.87-93
    • /
    • 1989
  • To develop high dfficiency-low energy consumption attrition coupled bioreactor for enhanced enzymatic hyerolysis of insoluble biomass, a tumbling drum type bioreactor was installed, and its efficiency was evaluated. The effects of drum structure and poerational conditions were investigated. The optimal saccharification at 3L drum was obtained at 8 baffled drum, drum diameter to baffle height ratio of 1:0.05, 100rpm, and addition of 600g of 3mm glass bead per liter. The consumed power for rolling of drum and energy consumption for half digestion of cellulose were measured, and compared with enhanced rate and yield to predict the economic prospect of the process. The tumbling drum type bioreactor seems to have appropriated structure for industrial scale operation, and further investigation for scale-up need to be conducted.

  • PDF

Enhanced Flame Resistant Properties of Aluminum Hydroxide Addition on Electrospun Polyurethane Nanofibers (전기방사법에 의해 제조된 폴리우레탄 나노섬유의 수산화알루미늄 내첨에 의한 내염화 특성 향상)

  • Kim, Hyeong Gi
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.9-13
    • /
    • 2016
  • Anti-oxidation and flame resistant polyurethane nanofibers were prepared by electrospinning and aluminum hydroxide addition. Electrospinning was carried out under the following procedure conditions; applied voltage, 20 kV; polymer solution feeding rate, 1.2 ml/h; collector rolling speed, 120 rpm; and tip to collector distance, 15 cm. Aluminum hydroxide was added to the prepared polymer solution for electrospinning to enhance the oxidation and flame resistant properties. The thermal properties were investigated by thermogravimetric analysis to determine the polymer decomposition temperature, integral procedure decomposition temperature, final decomposition temperature, and remaining amount after thermal decomposition. The activated energy for polymer degradation was also investigated using the Horowitz-Metzger equation. The activation energy increased to more than 50%. The thermal properties of the polyurethane nanofibers were improved by a hydration reaction during the thermal decomposition of aluminum hydroxide around $300{\sim}500^{\circ}C$.

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

The Study on Automation and Development of Strip Continuous Casting by Twin Roller Type (쌍로울형 박판연속주조공정의 개발과 자동화에 관한 연구)

  • Lee, Sang-Mae;Kim, Young-Do;Baek, Nam-Ju;Gang, Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.1
    • /
    • pp.37-52
    • /
    • 1990
  • In this study, the characteristics of cooling and rolling during strip casting process is obtained in comparison with the experimental and analytical results. The prupose of this study is to effectively analyze the thermal and mechanical deformation of roller applying the results of the heat transfer and the pressure distribution to boundary conditions. And then the relation between strip thickness and roll deformation is shown. The second purpose is to obtain the proper condition of the continuous casting for stainless steel. The summary and conclusions can be made on the basis of the results obtained by the theories and experiments. a) The strip casting condition for the fine surface quality of tin-alloy as-cast material was obtained in accordance with the velocity of roll rotation and initial roll gap. b) The experimental condition that the dimension of the cast strip thickness coincide with that of the initial roll gap was according to the experimental result of continuous casting by twin-roll type. c) The thermoelastic finite element model to calculate the roll deformation is represented. Thermoelastic model prediction for the roll deformation are in good agreement with the experimental results considering the thermal expansion of the roll. d) The higher cooling rates were obtained by a twin-roller quenching technique. Also quenched microstructure of the rapidly solidified shell was verified. e) The magnitude of roll deformation due to the thermal expansion and roll separating force is quantit- atively represented in the analysis of continuous casting for stainless steel.

  • PDF

Sediment Erosion and Transport Experiments in Laboratory using Artificial Rainfall Simulator

  • Regmi, Ram Krishna;Jung, Kwansue;Nakagawa, Hajime;Kang, Jaewon;Lee, Giha
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.13-27
    • /
    • 2014
  • Catchments soil erosion, one of the most serious problems in the mountainous environment of the world, consists of a complex phenomenon involving the detachment of individual soil particles from the soil mass and their transport, storage and overland flow of rainfall, and infiltration. Sediment size distribution during erosion processes appear to depend on many factors such as rainfall characteristics, vegetation cover, hydraulic flow, soil properties and slope. This study involved laboratory flume experiments carried out under simulated rainfall in a 3.0 m long ${\times}$ 0.8 m wide ${\times}$ 0.7 m deep flume, set at $17^{\circ}$ slope. Five experimental cases, consisting of twelve experiments using three different sediments with two different rainfall conditions, are reported. The experiments consisted of detailed observations of particle size distribution of the out-flow sediment. Sediment water mixture out-flow hydrograph and sediment mass out-flow rate over time, moisture profiles at different points within the soil domain, and seepage outflow were also reported. Moisture profiles, seepage outflow, and movement of overland flow were clearly found to be controlled by water retention function and hydraulic function of the soil. The difference of grain size distribution of original soil bed and the out-flow sediment was found to be insignificant in the cases of uniform sediment used experiments. However, in the cases of non-uniform sediment used experiments the outflow sediment was found to be coarser than the original soil domain. The results indicated that the sediment transport mechanism is the combination of particle segregation, suspension/saltation and rolling along the travel distance.

Effect of Strain Aging on the Tensile Properties of an API X70 Linepipe Steel (API X70 라인파이프강의 인장 특성에 미치는 변형 시효의 영향)

  • Lee, Seung-Wan;Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.524-529
    • /
    • 2017
  • The effect of strain aging on the tensile properties of API X70 linepipe steel was investigated in this study. The API X70 linepipe steel was fabricated by controlled rolling and accelerated cooling processes, and the microstructure was analyzed using optical and scanning electron microscopes and electron backscatter diffraction. Strain aging tests consisting of 1 % pre-strain and thermal aging at $200^{\circ}C$ and $250^{\circ}C$ were conducted to simulate U-forming, O-forming, Expansion(UOE) pipe forming and anti-corrosion coating processes. The API X70 linepipe steel was composed of polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite whose volume fraction was dependent on the chemical composition and process conditions. As the thermal aging temperature increased, the steel specimens showed more clearly discontinuous type yielding behavior in the tensile stress-strain curve due to the formation of a Cottrell atmosphere. After pre-strain and thermal aging, the yield and tensile strengths increased and the yield-to-tensile strength ratio decreased because yielding and aging behaviors significantly affected work hardening. On the other hand, uniform and total elongations decreased after pre-strain and thermal aging since dislocation gliding was restricted by increased dislocation density after a 1 % pre-strain.

Preparation of Barley Leaf Powder Tea and Its Quality Characteristics (보리잎 분말차의 제조와 그 품질특성)

  • Kim, Dong-Chung;Kim, Dong-Won;Lee, Sung-Dong;In, Man-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.6
    • /
    • pp.734-737
    • /
    • 2006
  • This study was carried out to establish the manufacturing process of barley leaf powder tea. The optimal manufacturing process among many trials was determined with sensory evaluation. Finally established process and operation conditions were as follows: pretreatment (cutting and washing), steaming ($100^{\circ}C$, 30 sec), primary drying and roasting ($130^{\circ}C$, 40 min), rolling (RT, 25 min), middle drying and roasting ($60^{\circ}C$, 30 min), final drying and roasting ($55^{\circ}C$, 25 min), drying ($60^{\circ}C$, 20 min), roasting ($85^{\circ}C$, 20 min), and powdering (120 mesh). The barley leaf powder tea produced by this process mainly consisted of dietary fiber (33.8%), amino acids (12.9%), minerals (4.7%) and ${\beta}-carotene$ (6.9 mg%).

Studies on the Prevention of Excessive Drying Leaves during Burley Tobacco Curing III. Effect of the Ventilating Conditions on the Occurrence of Excessive Curing Leaves (버어리종 건조시 급건엽발생방지에 관한 연구 III. 환기조건이 급건엽발생에 미치는 영향)

  • 배성국
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.2
    • /
    • pp.130-136
    • /
    • 1987
  • The studies were carried out to investigate the occurrence of excessive dried leaves during burley tobacco curing. Six different periods of ventilation during the entire stage of curing were applied. And also 3 different heights of rolling up polyethlene film for side ventilation of the curing house combined with 4 different spaces between garlands were applied from after yellowing. The high air temperature and low relative humidity from end of yellowing to end of browning stage were the most critical to occur excessive dried \eaves. As side ventilation was continued for the entire stage of curing, air temperature in curing house was lower and occurrence of excessive dried leaves were remarkably decreased. The air temperature was not affected on hanging spaces, but relative humidity that resulted significantly in decreasing of the excessive dried leaves was increased by narrowing of hanging spaces. As excessive dried leaves were increased, its price per kg was lower, its physical properties was worse and its total nitrogen and total suger were higher than those of normal cured leaves.

  • PDF