DOI QR코드

DOI QR Code

Enhanced Flame Resistant Properties of Aluminum Hydroxide Addition on Electrospun Polyurethane Nanofibers

전기방사법에 의해 제조된 폴리우레탄 나노섬유의 수산화알루미늄 내첨에 의한 내염화 특성 향상

  • Received : 2016.09.05
  • Accepted : 2016.10.17
  • Published : 2016.12.31

Abstract

Anti-oxidation and flame resistant polyurethane nanofibers were prepared by electrospinning and aluminum hydroxide addition. Electrospinning was carried out under the following procedure conditions; applied voltage, 20 kV; polymer solution feeding rate, 1.2 ml/h; collector rolling speed, 120 rpm; and tip to collector distance, 15 cm. Aluminum hydroxide was added to the prepared polymer solution for electrospinning to enhance the oxidation and flame resistant properties. The thermal properties were investigated by thermogravimetric analysis to determine the polymer decomposition temperature, integral procedure decomposition temperature, final decomposition temperature, and remaining amount after thermal decomposition. The activated energy for polymer degradation was also investigated using the Horowitz-Metzger equation. The activation energy increased to more than 50%. The thermal properties of the polyurethane nanofibers were improved by a hydration reaction during the thermal decomposition of aluminum hydroxide around $300{\sim}500^{\circ}C$.

본 논문에서는 내산화성 및 난연성이 향상된 폴리우레탄 나노섬유를 전기방사법 및 수산화알루미늄 내첨을 통해 제조하였다. 전기방사 조건은 인가전압: 20 kV, 폴리머 용액 유량: 1.2 ml/h, 롤러 속도: 120 rpm 및 롤러와 주사기 팁의 거리: 15 cm의 공정변수에서 최적의 조건을 확인하였다. 폴리우레탄 섬유의 내산화성 및 난연성을 향상시키기 위하여, 수산화알루미늄을 전기방사 시 내첨하였다. 제조된 샘플의 열적 특성을 평가하기 위하여 열중량분석기(thermogravimetric analysis, Shimadzu, TGA-50H)를 사용하였다. 또한 관련 분석을 통해 고분자 분해 온도(polymer decomposition temperature), 적분열분해 진행온도(integral procedure decomposition temperature), 최종 분해 온도(final decomposition temperature) 및 열분해 후 잔여량 등을 분석하였다. 그리고 분해 반응의 속도론적 고찰을 위해 Horowitz-Metzger 적분식을 통해 활성화 에너지를 해석하였다. 수산화알루미늄의 내첨에 의해, 분해 활성화 에너지가 50% 이상 증가함을 확인하였다. 이는 수산화알루미늄이 $300{\sim}500^{\circ}C$에서 열분해함에 따라 수화반응에 의해 폴리우레탄 나노섬유의 열분해 저항성이 커지기 때문인 것으로 파악된다.

Keywords

References

  1. J. B. Donnet and R. C. Bansal, "Carbon Fibers", Marcel Dekker, 3rd edition, pp. 12-27 (1984).
  2. X. Huang, "Fabrication and Properties of Carbon Fibers", Materials, Vol. 2, pp. 2369-2403 (2009). https://doi.org/10.3390/ma2042369
  3. A. D. Cato and D. D. Edie, "Flow Behavior of Mesophase Pitch", Carbon, Vol. 41, pp. 1411-1417 (2003). https://doi.org/10.1016/S0008-6223(03)00050-2
  4. O. P. Bahl and L. M. Manocha, "Characterization of Oxidized Pan Fibers", Carbon, Vol. 12, pp. 417-423 (1974). https://doi.org/10.1016/0008-6223(74)90007-4
  5. D. J. Johnson and C. N. Tyson, "The Fine Structure of Graphitized Fibers", J. Phys. D, Vol. 2, pp. 787-795 (1969). https://doi.org/10.1088/0022-3727/2/6/303
  6. J. B. Donnet, S. Rebouillat, T. K. Wang and J. C. M. Peng, "Carbon Fibers", Marcel Dekker, 3rd edition, pp. 1-85, NY, USA (1998).
  7. L. H. Peebles, Carbon Fibers: Formation, "Structure, and Properties", CRC Press, 1st edition, Vol. 3, FL, USA (1995).
  8. Z. M. Huang, Y. Z. Zhang, M. Kotaki and S. Ramakrishna, "A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites", Comp. Sci. Technol., Vol. 63, pp. 2223-2253 (2003). https://doi.org/10.1016/S0266-3538(03)00178-7
  9. P. K. Baumgarten, "Electrostatic Spinning of Acrylic Microfibers", J. Colloid Interface Sci., Vol. 36, pp. 71-79 (1971). https://doi.org/10.1016/0021-9797(71)90241-4
  10. M. J. Jung, J. W. Kim, J. S. Im, S. J. Park and Y. S. Lee, "Nitrogen and Hydrogen Adsorption of Activated Carbon Fibers Modified by Fluorination", J. Ind. Eng. Chem., Vol. 15, pp. 410-414 (2009). https://doi.org/10.1016/j.jiec.2008.11.001
  11. G. Rodrigues da Silva, S. C. Armando, B. C. Francine, A. Eliane and L. O. Rodrigo, "Biodegradation of Polyurethanes and Nanocomposites to Non-cytotoxic Degradation Products", Polym. Degrad. Stab., Vol. 95, pp. 491-499 (2010). https://doi.org/10.1016/j.polymdegradstab.2010.01.001
  12. S. Liodakis, T. Kakardakis, S. Tzortzakou and V. Tsapara, "How to Measure the Particle Ignitability of Forest Species by TG and LOI", Thermochim. Acta., Vol. 477, pp. 16-20 (2008). https://doi.org/10.1016/j.tca.2008.08.003
  13. Y. Sekiguchi, J. S. Frye and F. Shafizadeh, "Structure and Formation of Cellulosic Chars", J. Appl. Polym. Sci., Vol. 28, pp. 3513-3525 (1983). https://doi.org/10.1002/app.1983.070281116
  14. S. W. Benson and P. S. Nogia, "Some Unresolved Problems in Oxidation and Combustion", Acc. Chem. Res., Vol. 12, pp. 223-228 (1979). https://doi.org/10.1021/ar50139a001
  15. T. Kashiwagi, F. Du, J. F. Douglas, K. I. Winey, R. H. Harris and J. R. Shields, "Nanoparticle Networks Reduce the Flammability of Polymer Nanocomposites", Nat. Mater., Vol. 4, pp. 928-933 (2005). https://doi.org/10.1038/nmat1502
  16. Z. Shen, S. Bateman, D. Y. Wu, P. Mc Mahon, M. Dell'Olio and J. Gotama, "The Effects of Carbon Nanotubes on Mechanical and Thermal Properties of Woven Glass Fibre Reinforced Polyamide-6 Nanocomposites", Compos. Sci. Technol., Vol. 69, pp. 239-244 (2009). https://doi.org/10.1016/j.compscitech.2008.10.017
  17. J. H. Choy, J. S. Yoo, J. T. Kim, C. K. Lee and N. H. Lee, "Alum and Hydroxide Routes to ${\alpha}-Al_2O_3$ (II) Ultrafine Alumina by Thermal Decomposition", J. Kor. Chem. Soc., Vol. 35, pp. 422-426 (1991).
  18. C. D. Doyle, "Estimating Thermal Stability of Experimental Polymers by Empirical Thermogravimetric Analysis", Anal. Chem., Vol. 33, pp. 77-79 (1961). https://doi.org/10.1021/ac60169a022
  19. van Krevelen D. W., "Some Basic Aspects of Flame Resistance of Polymeric Materials", Polymer, Vol. 16, pp. 615-620 (1975). https://doi.org/10.1016/0032-3861(75)90157-3