• Title/Summary/Keyword: roll force

Search Result 303, Processing Time 0.025 seconds

Optimal Dimple Point of SFF HDD Suspension for Improving the Unloading Performance (언로드 성능 향상을 위한 딤플 포인트의 최적설계)

  • Kim, Ki-Hoon;Lee, Young-Hyun;Lee, Hyung-Jun;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.609-612
    • /
    • 2007
  • The HDD (hard disk drive) using Load/Unload (L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop (CSS). Dynamic L/UL has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main design objectives of the L/UL mechanisms are no slider-disk contact or no media damage even with contact during L/UL, and a smooth and short unloading process. In this paper, we focus on lift-off force, pitch static attitude (PSA), roll static attitude (RSA) and dimple point. The "lift-off" force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. PSA and RSA are also very important parameters in L/UL system and stability of slider is mainly determined by PSA and RSA. Dimple point by PSA and RSA is also important indicator. Therefore we find the optimal dimple point of SFF HDD suspension for improving the unloading performance.

  • PDF

Stability Evaluation during Transportation of Caisson for Breakwater (방파제용 대형 케이슨 운반에 따른 안정성 평가)

  • Seok, Jun;Park, Jong-Chun;Heo, Jae-Kyung;Kang, Heon-Yong;Bae, Yoon-Hyeok;Kim, Moo-Hyun;Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.13-22
    • /
    • 2010
  • While a caisson used for breakwater is carried by a floating dock, accompanying stability problem by its existing motions in the dock is quite important and should be pre-checked against sea environmental condition. In the stability analysis, the acceleration, velocity, angle of roll and pitch motions are important to calculate frictional force and separation force. If separation force becomes bigger than frictional force, serious collision may be occurred between caisson and floating dock. In this study, stability evaluation during the transportation of a caisson on floating dock for breakwater was performed by using a commercial program, HydroD and CHARM3D/HARP.

The Relaion between Cold Rolling Factors and the Edge Drop (냉연 작업인자와 edge drop의 상관관계)

  • Yeo W. K.;Hwang S. M.;Chung J. S.;Kim J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.142-146
    • /
    • 2001
  • In this study, it was investigated the influence of cold rolling factors on the edge drop. Edge drop was highly affected by the shape of work roll, the amount of work roll shift and the crown of hot strip, but the effect of bending force at the front stand was relatively small. The used numerical model was examined by comparing to the result of measured field data, and it showed a qualitative agreement with each other.

  • PDF

Ride Quality of a Heavy Duty Truck on a Single Bump Road (범프로드에서의 대형트럭 승차감 평가)

  • 강희용;양성모;김봉철;윤희중
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.91-96
    • /
    • 2001
  • When it is considered that many vehicle rides on the road and ride quality is an important method to evaluate vehicle performance with handling, running-over-bump manoeuvre may be suitable for testing ride quality. In this paper, a computed model has roughly steering system and lumped mass, connected by joint each rigid body, and suspension that has beam elements and has shock absorber as force element to represent nonlinear characteristics. A computer simulations for passing over a bump were made with two velocities. One side of vehicle passed over bump in due consideration of driver's habit that driver is subject to avoid a bad ride quality. On simulation, vertical acceleration, pitch angle and roll angle were measured at the mass center of chassis each case.

  • PDF

Analysis of Asymmetric Plate Rolling in Roughing Mill (열간 조압연에서 비대칭압연 해석)

  • Park H. D.;Chung J. H.;Bae W. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.13-16
    • /
    • 2000
  • In the hot strip mill, a bad threading and shape of strip strip in the finishing mill was caused by asymmetric rolling In roughing min. Mathematical analysis for camber control of roughing mill in hot strip rolling has been developed. Each equation in the camber control model was derived from geometrical characteristics of camber mechanism. The model can predict variables such as wedge, side slippage and roll force difference etc. from a measured camber value and then find an optimum roll gap condition for minimizing camber in the next pass.

  • PDF

Design of an Active Suspension Controller with Simple Vehicle Models (단순 차량 모델을 이용한 능동 현가장치 제어기 설계)

  • Yim, Seongjin;Jeong, Jinhwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.177-185
    • /
    • 2016
  • This paper presents a method to design a controller for active suspension with 1-DOF decoupled models. Three 1-DOF decoupled models describing vertical, roll and pitch motions are used to design a controller in order to generate a vertical force, roll and pitch moments, respectively. These control inputs are converted into active suspension forces with geometric relationship. To design a controller, a sliding mode control is adopted. Frequency domain analysis and simulation on vehicle simulation software, CarSim$^{(R)}$, show that the proposed method is effective for ride comfort.

High Temperature Deformation Resistance of Stainless Steels (스테인레스강의 열간변형저항)

  • 김영환;정병완
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.366-372
    • /
    • 1999
  • The deformation behavior of commercial stainless steels under hot rolling conditions was investigated by means of hot compression tests performed in the temperature range 800$^{\circ}C$ to 1200$^{\circ}C$. The measured flow stress-strain curves were analyzed by using a simple flow stress model. It was found that the reference strength of stainless steels are much higher than that of carbon steel and that nitrogen and molybdenum alloying greatly increases flow stress of austenitic stainless steel. Ferritic and duplex stainless steel showed comparatively low flow stresses. The flow stress model, which correlates the flow stress with temperature and strain rate, was applied to predict roll forces during hot-plate rolling of stainless steels.

  • PDF

Analysis of rear suspension using airspring (공기스프링 현가장치 성능해석)

  • Tak, tae-oh;Kim, kum-Chul
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.31-42
    • /
    • 1999
  • This paper presents a method for evaluating the performance of a leaf spring suspension and an air spring suspension systems for trucks in terms of ride and handling. Leaf springs, which generally have non-linear progressive force-deflection characteristics, are modeled using beam and contact elements. The leaf spring analysis model shows good correlation with experimental results. Each component of an air spring suspension system, which is a single leaf, air spring, height control valve, compressor and linkages, is modeled appropriately. Non-linear characteristics of air spring are accounted for using the measured data, and pressure and volume relations for height control system is also considered. The wheel rate of the air suspension is taken lower but roll stiffness is taken higher than those of leaf springs to improve ride and handling performance, which is verified through driving simulations.

  • PDF

Study on Korean In-Flight Simulator Aircraft (한국형 공중 시뮬레이터 항공기 연구)

  • Ko, Joon-Soo;Ahn, Jong-Min;Park, Sung-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1026-1030
    • /
    • 2011
  • This paper presented here contains development of variable stability system(VSS) control laws for the KIFS (Korean In-Flight Simulator) aircraft to simulate the dynamics of F-16 aircraft. Development of VSS Control law for pitch rate, roll rate, yaw rate simulation for three specified flight conditions using Model Following Technique with rate feedback autopilot for stability provision. The direct lift force controller was also added to the developed VSS control law to simulate the pitch rate and normal g-load simultaneously. The simulation results show high accuracy of F-16 aircraft's pitch, roll, yaw rate and g-load simulation.

On the Unstable Behavior of Roll Moment due to the Manoeuvering of a Ship (조종운동이 유발하는 횡경사모우멘트의 불안정거동에 관한 연구)

  • 윤점동;손경호
    • Journal of the Korean Institute of Navigation
    • /
    • v.4 no.1
    • /
    • pp.51-61
    • /
    • 1980
  • In order to evaluate rolling characteristics of high speed container carrier the author developed yaw-sway-rudder coupled rool equation, which is likely to be 5th order differential equation. The free rolling time history with particular reference to automatic steering, was computed upon the base of the yaw-sway-rudder coupled roll equation. The computed result explained effects of $C_1$ and $C_2$ on rolling behaviors and furthermore the effect of $C_2$ proved to be very effective where $C_1$ and $C_2$ are yaw gin constant and yaw-rate gain constant of auto-pilot respectively. Computation was carried out using Matsumoto's data of hydrodynamic force derivatives of 5 meter long container model.

  • PDF