• 제목/요약/키워드: rock specimens

검색결과 292건 처리시간 0.022초

Effect of brittleness on the micromechanical damage and failure pattern of rock specimens

  • Imani, Mehrdad;Nejati, Hamid Reza;Goshtasbi, Kamran;Nazerigivi, Amin
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.535-547
    • /
    • 2022
  • Failure patterns of rock specimens represent valuable information about the mechanical properties and crack evolution mechanism of rock. Several kinds of research have been conducted regarding the failure mechanism of brittle material, however; the influence of brittleness on the failure mechanism of rock specimens has not been precisely considered. In the present study, experimental and numerical examinations have been made to evaluate the physical and mechanical phenomena associated with rock failure mechanisms through the uniaxial compression test. In the experimental part, Unconfined Compressive Strength (UCS) tests equipped with Acoustic Emission (AE) have been conducted on rock samples with three different brittleness. Then, the numerical models have been calibrated based on experimental test results for further investigation and comparing the micro-cracking process in experimental and numerical models. It can be perceived that the failure mode of specimens with high brittleness is tensile axial splitting, based on the experimental evidence of rock specimens with different brittleness. Also, the crack growth mechanism of the rock specimens with various brittleness using discrete element modeling in the numerical part suggested that the specimens with more brittleness contain more tensile fracture during the loading sequences.

Study on anchorage effect on fractured rock

  • Wang, Jing;Li, Shu-Cai;Li, Li-Ping;Zhu, Weishen;Zhang, Qian-Qing;Song, Shu-Guang
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.791-801
    • /
    • 2014
  • The effects of anchor on fractured specimens in splitting test are simulated by DDARF method, the results of which are compared with laboratory test results. They agree well with each other. The paper contents also use the laboratory model test. The main research objects are three kinds of specimens, namely intact specimens, jointed specimens and anchored-jointed specimens. The results showed that with the joint angle increased, the weakening effects of jointed rock mass are more obvious. At these points, the rock bolts' strengthening effects on the specimens have become more significant. There is a significant impact on the failure modes of rock mass by the joint and the anchorage.

Scale effect of mechanical properties of jointed rock mass: A numerical study based on particle flow code

  • Wang, Xiao;Yuan, Wei;Yan, Yatao;Zhang, Xue
    • Geomechanics and Engineering
    • /
    • 제21권3호
    • /
    • pp.259-268
    • /
    • 2020
  • The synthetic rock mass (SRM) were used to investigate the influence of specimen size on the mechanical properties of jointed rock mass. The SRM were established based on parallel bond model (PBM) and smooth joint model (SJM) and the scaled rock specimens were sampled in two SRMs considering three sampling locations. The research results show that the smaller the initial fracture density is, the greater the uniaxial compressive strength (UCS), elastic modulus (E) is when compared with the same sampling location. The mechanical properties of rock specimens obtained by different sampling methods in different SRMs have different scale effects. The strength of rock specimens with more new cracks is not necessarily less than that of rock specimens with fewer new cracks and the failure of rock is caused by the formation of macro-fracture surface.

초등학교 과학 교육에서 활용하는 암석 표본의 문제점과 개선 방안 (The Problems and Improvements of Rock Specimens used for Science Education in Elementary Schools)

  • 권윤경;김정률
    • 한국지구과학회지
    • /
    • 제33권1호
    • /
    • pp.82-93
    • /
    • 2012
  • 이 연구의 목적은 초등학교 과학 교육에서 활용하는 암석 표본의 문제점과 개선 방안을 알아보기 위한 것이다. 연구를 위하여, 경북 K시 소재 5개 초등학교에서 활용하고 있는 암석 표본 세트 중 대표성을 띠는 암석 표본 세트 20종을 임의로 선정하여 현장 조사와 사진 촬영을 실시하고, 과학 업무를 5년 이상 담당한 경험이 있는 초등 교사 3인을 대상으로 면담을 실시하였다. 연구 결과, 초등학교 교육과정이 반영된 암석 표본 세트는 10%에 불과하였다. 유효 기간이 약 30년 지나 교육적 가치가 떨어지고 명패와 설명서에 제시된 정보들에서 많은 오류가 발견되었으며, 암석 표본의 크기가 너무 작고 특징이 나타나지 않아서 학습 자료로 활용하기에는 다소 문제가 있는 것으로 나타났다. 이 외에도 암석 표본의 구입과 검증 절차를 소홀히 하거나 교사의 관심과 관련 지식 부족, 암석 표본에 대한 정보의 부족 등으로 교육을 위한 좋은 암석 표본을 구입하는 데 어려움이 있었다. 따라서 이를 개선하기 위해서는 암석 표본에 대한 전문가의 검증이 필요하며, 암석 표본은 교육과정과 교과서의 내용을 충실히 반영되어야 한다. 개선 방안의 일환으로서 초등학교 과학 교육용 암석 표본 설명서를 제안하였다.

Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction

  • Kou, Miaomiao;Liu, Xinrong;Wang, Yunteng
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.283-296
    • /
    • 2020
  • The coupled hydro-mechanical loading conditions commonly occur in the geothermal and petroleum engineering projects, which is significantly important influence on the stability of rock masses. In this article, the influence of flaw inclination angle of fracture behaviors in rock-like materials subjected to both mechanical loads and internal hydraulic pressures is experimentally studied using the 3-D X-ray computed tomography combined with 3-D reconstruction techniques. Triaxial compression experiments under confining pressure of 8.0 MPa are first conducted for intact rock-like specimens using a rock mechanics testing system. Four pre-flawed rock-like specimens containing a single open flaw with different inclination angle under the coupled hydro-mechanical loading conditions are carried out. Then, the broken pre-flawed rock-like specimens are analyzed using a 3-D X-ray computed tomography (CT) scanning system. Subsequently, the internal damage behaviors of failed pre-flawed rock-like specimens are evaluated by the 3-D reconstruction techniques, according to the horizontal and vertical cross-sectional CT images. The present experimental does not only focus on the mechanical responses, but also pays attentions to the internal fracture characteristics of rock-like materials under the coupled hydro-mechanical loading conditions. The conclusion remarks are significant for predicting the rock instability in geothermal and unconventional petroleum engineering.

Experimental study of crack propagation of rock-like specimens containing conjugate fractures

  • Sun, Wenbin;Du, Houqian;Zhou, Fei;Shao, Jianli
    • Geomechanics and Engineering
    • /
    • 제17권4호
    • /
    • pp.323-331
    • /
    • 2019
  • The presence of defects in nature changes the physical parameters of the rock. In this paper, by studying the rock-like specimens with conjugated fractures, the horizontal angle and length are changed, and the physical parameters and failure modes of the specimens under uniaxial compression test are analyzed and compared with the results of simulation analysis. The experimental results show that the peak strength and failure mode of the rock-like specimens are closely related to the horizontal angle. When the horizontal angle is $45^{\circ}$, the maximum value is reached and the tensile failure mode is obtained. The fracture length affects the germination and propagation path of the cracks. It is of great significance to study the failure modes and mechanical properties of conjugated fracture rock-like specimens to guide the support of fractured rock on site.

Dog bone shaped specimen testing method to evaluate tensile strength of rock materials

  • Komurlu, Eren;Kesimal, Ayhan;Demir, Aysegul Durmus
    • Geomechanics and Engineering
    • /
    • 제12권6호
    • /
    • pp.883-898
    • /
    • 2017
  • To eliminate the holding and gluing problems making the direct tensile strength test hard to be applied, a new method of testing specimens prepared using lathe machine to make the dog bone shape is assessed whether it could be applied to determine accurate direct tensile strength values of rock materials. A series of numerical modelling analyses was performed using finite element method to investigate the effect of different specimen and steel holder geometries. In addition to numerical modelling study, a series of direct tensile strength tests was performed on three different groups of rock materials and a rock-like cemented material to compare the results with those obtained from the finite element analyses. A proper physical property of the lathed specimens was suggested and ideal failure of the dog bone shaped specimens was determined according to the results obtained from this study.

Energy evolution characteristics of coal specimens with preformed holes under uniaxial compression

  • Wu, Na;Liang, Zhengzhao;Zhou, Jingren;Zhang, Lizhou
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.55-66
    • /
    • 2020
  • The damage or failure of coal rock is accompanied by energy accumulation, dissipation and release. It is crucial to study the energy evolution characteristics of coal rock for rock mechanics and mining engineering applications. In this paper, coal specimens sourced from the Xinhe mine located in the Jining mining area of China were initially subjected to uniaxial compression, and the micro-parameters of the two-dimensional particle flow code (PFC2D) model were calibrated according to the experimental test results. Then, the PFC2D model was used to subject the specimens to substantial uniaxial compression, and the energy evolution laws of coal specimens with various schemes were presented. Finally, the elastic energy storage ratio m was investigated for coal rock, which described the energy conversion in coal specimens with various arrangements of preformed holes. The arrangement of the preformed holes significantly influenced the characteristics of the crack initiation stress and energy in the prepeak stage, whereas the characteristics of the cumulative crack number, failure pattern and elastic strain energy during the loading process were similar. Additionally, the arrangement of the preformed holes altered the proportion of elastic strain energy Ue in the total energy in the prepeak stage, and the probability of rock bursts can be qualitatively predicted.

암석의 미세균열의 발달과 분포의 예측방법에 관한 연구 (Study on the Prediction of the Occurrence and Distribution of the Microcracks in Rock)

  • 백환조;김덕현;최성범
    • 터널과지하공간
    • /
    • 제8권3호
    • /
    • pp.226-233
    • /
    • 1998
  • 자연적으로, 혹은 인위적으로 발생된 균열들은 현지암반의 공학적 거동에 대한 중요한 자료를 제공한다. 일정한 방향으로 분포하는 미세균열들은 암반의 물성에 현저한 영향을 미치게 되지만, 다른 요인들에 의한 이방성이 큰 경우에는 이들의 영향은 감소한다. 본 연구에서는 초음파속도의 이방성과 점하중 재하에 의한 인공균열의 진행방향을 기초로, 암석조직이 암석의 물성에 미치는 영향에 대하여 조사하였다. 암석시료는 우백질의 포천화강암 석재에서 코어링한 NX 시험편과 현장 시추코어를 사용하였다. 시료에 분포하는 균열들의 주 방향을 기준으로 설정한 후, 초음파속도의 이방성을 측정한 결과, 균열에 수직한 방향에서 초음파속도의 최소치가 측정되었다. 속도측정에 사용한 NX코어로부터 EX크기의 원판형 시험편을 성형한 수 점하중 재하실험을 수행하였으며, 점하중재하에 의한 인공균열의 진행방향은 기존의 미세균열의 방향과 거의 일치하였다.

  • PDF

Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone

  • Maruvanchery, Varun;Kim, Eunhye
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.57-67
    • /
    • 2019
  • Water-induced strength reduction is one of the most critical causes for rock deformation and failure. Understanding the effects of water on the strength, toughness and deformability of rocks are of a great importance in rock fracture mechanics and design of structures in rock. However, only a few studies have been conducted to understand the effects of water on fracture properties such as fracture toughness, crack propagation velocity, consumed energy, and microstructural damage. Thus, in this study, we focused on the understanding of how microscale damages induced by water saturation affect mesoscale mechanical and fracture properties compared with oven dried specimens along three notch orientations-divider, arrester, and short transverse. The mechanical properties of calcite-cemented sandstone were examined using standard uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS) tests. In addition, fracture properties such as fracture toughness, consumed energy and crack propagation velocity were examined with cracked chevron notched Brazilian disk (CCNBD) tests. Digital Image Correlation (DIC), a non-contact optical measurement technique, was used for both strain and crack propagation velocity measurements along the bedding plane orientations. Finally, environmental scanning electron microscope (ESEM) was employed to investigate the microstructural damages produced in calcite-cemented sandstone specimens before and after CCNBD tests. As results, both mechanical and fracture properties reduced significantly when specimens were saturated. The effects of water on fracture properties (fracture toughness and consumed energy) were predominant in divider specimens when compared with arrester and short transverse specimens. Whereas crack propagation velocity was faster in short transverse and slower in arrester, and intermediate in divider specimens. Based on ESEM data, water in the calcite-cemented sandstone induced microstructural damages (microcracks and voids) and increased the strength disparity between cement/matrix and rock forming mineral grains, which in turn reduced the crack propagation resistance of the rock, leading to lower both consumed energy and fracture toughness ($K_{IC}$).