DOI QR코드

DOI QR Code

Dog bone shaped specimen testing method to evaluate tensile strength of rock materials

  • Komurlu, Eren (Department of Mining Engineering, Karadeniz Technical University) ;
  • Kesimal, Ayhan (Department of Mining Engineering, Karadeniz Technical University) ;
  • Demir, Aysegul Durmus (Department of Civil Engineering, Karadeniz Technical University)
  • Received : 2016.08.30
  • Accepted : 2017.01.16
  • Published : 2017.06.25

Abstract

To eliminate the holding and gluing problems making the direct tensile strength test hard to be applied, a new method of testing specimens prepared using lathe machine to make the dog bone shape is assessed whether it could be applied to determine accurate direct tensile strength values of rock materials. A series of numerical modelling analyses was performed using finite element method to investigate the effect of different specimen and steel holder geometries. In addition to numerical modelling study, a series of direct tensile strength tests was performed on three different groups of rock materials and a rock-like cemented material to compare the results with those obtained from the finite element analyses. A proper physical property of the lathed specimens was suggested and ideal failure of the dog bone shaped specimens was determined according to the results obtained from this study.

Keywords

References

  1. Bagheripour, M.H., Rahgozar, R., Pashnesaz, H. and Malekinejad, M. (2011), "A complement to Hoek-Brown failure criterion for strength prediction in anisotropic rock", Geomech. Eng., Int. J., 3(1), 61-81. https://doi.org/10.12989/gae.2011.3.1.061
  2. Brisevac, Z., Kujundzic, T. and Cajic, S. (2015), "Current Cognition of Rock Tensile Strength Testing By Brazilian Test", The Mining-Geology-Petroleum Engineering Bulletin. DOI: 10.17794/rgn.2015.2.2
  3. Carneiro, F.L.L.B. (1943), "A new method to determine the tensile strength of concrete". Proc. of the 5th meeting of the Brazilian Association for Technical Rules, 126-129. [In Portuguese]
  4. Chen, R. and Stimpson, B. (1993), "Interpretation of indirect tensile strength when moduli of deformation in compression and in tension are different", Rock Mech. Rock Eng., 26(2), 183-189. https://doi.org/10.1007/BF01023622
  5. Coviello, A., Lagioia, R. and Nova, R. (2005), "On the measurement of the tensile strength of soft rocks", Rock Mech. Rock Eng., 38(4), 251-273. https://doi.org/10.1007/s00603-005-0054-7
  6. Erarslan, N. and Williams, D.J. (2012), "Experimental, numerical and analytical studies on tensile strength of rocks", Int. J. Rock Mech. Min. Sci., 49, 21-30. https://doi.org/10.1016/j.ijrmms.2011.11.007
  7. Erarslan, N., Liang, Z.Z. and Williams, D.J. (2012), "Experimental and Numerical Studies on Determination of Indirect Tensile Strength of Rocks", Rock Mech. Rock Eng., 45(5), 739-751. https://doi.org/10.1007/s00603-011-0205-y
  8. Gercek, H. and Ozarslan, A. (2011), "Tensile Strength Classification of Rock Material", Proceedings of the 10th Regional Rock Mechanics Symposium, Ankara, Turkey, December, pp. 105-116.
  9. Fairhurst, C. (1964), "On the validity of the 'Brazilian' test for brittle materials", Int. J. Rock Mech. Min. Sci., 1, 535-546. https://doi.org/10.1016/0148-9062(64)90060-9
  10. Hobbs, D.W. (1965), "An assessment of a technique for determining the tensile strength of rock", British J. Appl. Phys., 16(2), 259-268. https://doi.org/10.1088/0508-3443/16/2/319
  11. Hoek, E. and Brown, E.T. (1980), "Empirical strength criterion for rock masses", ASCE J. Geotech. Eng. Div., 106, 1013-1035.
  12. ISRM (2007), The blue book - the complete ISRM suggested methods for rock characterisation, testing and monitoring: 1974-2006; (R. Ulusay, J.A. Hudson Eds.), ISRM & Turkish Group of ISRM, Ankara, Turkey.
  13. Komurlu, E. (2012), "Effects of rock and granular material horizontal stresses on support design", M.Sc. Thesis; Karadeniz Technical University Mining Engineering Department, Turkey. [In Turkish]
  14. Komurlu, E. and Kesimal, A. (2012), "Jaw Effects on Indirect Tensile Strength Test Disc Failure Mechanism", Proceedings of the 7th Asian Rock Mechanics Symposium, Seoul, South Korea, October, pp. 624-637.
  15. Komurlu, E. and Kesimal, A. (2015), "Evaluation of indirect tensile strength of rocks using different types of jaws", Rock Mech. Rock Eng., 48(4), 1723-1730. https://doi.org/10.1007/s00603-014-0644-3
  16. Komurlu, E., Kesimal, A. and Demir, S. (2016a), "An experimental and numerical study on determination of indirect (splitting) tensile strength of rocks under various load apparatus", Can. Geotech. J., 53(2), 360-372. https://doi.org/10.1139/cgj-2014-0356
  17. Komurlu, E., Kesimal, A. and Demir, S. (2016b), "Determination of indirect (splitting) tensile strength of cemented paste backfill materials", Geomech. Eng., Int. J., 10(6), 775-791. https://doi.org/10.12989/gae.2016.10.6.775
  18. Kourkoulis, S.K. (2012), "Critical aspects of the mechanical behaviour and failure of Dionysos marble under direct tension", J. Serbian Soc. Computat. Mech., 6(1), 199-215.
  19. Kourkoulis, S.K., Markides, C.F. and Hemsley, J.A. (2013), "Frictional stresses at the disc-jaw interface during the standardized execution of the Brazilian disc test", Acta Mechanica, 224(2), 255-268. https://doi.org/10.1007/s00707-012-0756-3
  20. Krishnayya, A.V.G. and Eisenstein, Z. (1974), "Brazilian tensile test for soils", Can. Geotech. J., 11(4), 632-642. https://doi.org/10.1139/t74-064
  21. Li, D. and Wong, L.N.Y. (2013), "The Brazilian disc test for rock mechanics applications: Review and new insights", Rock Mech. Rock Eng., 46(2), 269-287. https://doi.org/10.1007/s00603-012-0257-7
  22. Luong, M.P. (1986), "Un nouvel essai pour la mesure de la resistance a la traction", Revue Francaise de Geotechnique, 34, 69-74.
  23. Markides, C,F., Pazis, D.N. and Kourkoulis, S.K. (2012), "The Brazilian disc under non-uniform distribution of radial pressure and friction", Int. J. Rock Mech. Min. Sci., 50, 47-55. https://doi.org/10.1016/j.ijrmms.2011.12.012
  24. Markides, C.F. and Kourkoulis, S.K. (2013), "Naturally accepted boundary conditions for the Brazilian disc test and the corresponding stress field", Rock Mech. Rock Eng., 46(5), 959-980. https://doi.org/10.1007/s00603-012-0351-x
  25. Markides, C.F. and Kourkoulis, S.K. (2016), "The influence of jaw's curvature on the results of the Brazilian disc test", J. Rock Mech. Geotech. Eng., 8(2), 127-146. https://doi.org/10.1016/j.jrmge.2015.09.008
  26. Mikl-Resch, M.J., Antretter, T., Gimpel, M., Kargl, H., Pittino, G., Tichy, R., Ecker, W. and Galler, R. (2015), "Numerical calibration of a yield limit function for rock materials by means of the Brazilian test and the uniaxial compression test", Int. J. Rock Mech. Min. Sci., 74, 24-29.
  27. van Mier, J.G.M. and van Vliet, M.R.A. (2002), "Uniaxial tension test for the determination of fracture parameters of concrete: State of the art", Eng. Fracture Mech., 69(2), 235-247. https://doi.org/10.1016/S0013-7944(01)00087-X
  28. Wang, M. and Cao, P. (2015), "Numerical study on flattened Brazilian Test and its empirical formula", Electro. J. Geotech. Eng., 20, 12211-12224.
  29. Willam, K.J. and Warnke, E.P. (1974), Constitutive Model For The Triaxial Behaviour of Concrete; IABSE, Report No.19, Bergamo, pp. 1-30.

Cited by

  1. Effect of Sample Dimension on Three and Four Points Bending Tests of Fine Crystalline Marble and its Relationship with Direct Tensile Strength vol.221, pp.None, 2017, https://doi.org/10.1088/1755-1315/221/1/012093
  2. A New Flattened Cylinder Specimen for Direct Tensile Test of Rock vol.21, pp.12, 2021, https://doi.org/10.3390/s21124157