Acknowledgement
Supported by : National Natural Science Foundation of China, Central Universities of China
This work is supported by National Natural Science Foundation of China (Grant Nos. 41972266; 41772319; 51674151), National Key Research and Development Program of China (Grant No. 2018YFC1504802), and Fundamental Research Funds for the Central Universities of China (Grant No. 2019CDCG0013) which are gratefully acknowledged.
References
- Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type material under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35(7), 863-888. https://doi.org/10.1016/S0148-9062(98)00005-9.
- Christe, P., Turberg, P., Labious, V., Meuli, R. and Parriaux, A. (2011), "An X-ray computed tomography-based index to characterize the quality of cataclastic carbonate rock samples", Eng. Geol., 117, 180-188. https://doi.org/10.1016/j.enggeo.2010.10.016.
- Cai, X., Zhou, Z., Liu, K., Du, X. and Zhang, H. (2019), "Water-Weakening Effects on the Mechanical Behavior of Different Rock Types: Phenomena and Mechanisms", Appl. Sci., 9(20), 4450. https://doi.org/10.3390/app9204450.
- Cao, R. H., Cao, P., Lin, H., Ma, G.W., X., Fan and Xiong, X.G. (2018), "Mechanical behavior of an opening in a jointed rock-like specimen under uniaxial loading: Experimental studies and particle mechanics approach", Arch. Civ. Mech. Eng., 18(1), 198-214. https://doi.org/10.1016/j.acme.2017.06.010.
- Cala, M., Cyran, K., Stopkowicz, A., Kolano, M. and Szczygielski, M. (2016), "Preliminary Application of X-ray Computed Tomograph on Characterisation of Polish Gas Shale Mechanical Properties", Rock Mech. Rock Eng., 49(12), 4935-4943. https://doi.org/10.1007/s00603-016-1045-6.
- Diaz, M., Kim, K.Y., Yeom, S., Zhuang, L., Park, S. and Min, K.B. (2017), "Surface roughness characterization of open and closed rock joints in deep cores using X-ray computed tomography", Int. J. Rock Mech. Min. Sci., 98, 10-19. https://doi.org/10.1016/j.ijrmms.2017.07.001.
- Einstein, H.H. and Hirschfeld, R.C. (1973), "Model studies on mechanics of jointed rock", J. Soil Mech. Found. Div. ASCE, 99, 229-248. https://doi.org/10.1061/JSFEAQ.0001859
- Feng, X.T., Chen, S.L. and Zhou H. (2004), "Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion", Int. J. Rock Mech. Min. Sci., 41(2), 181-192. https://doi.org/10.1016/S1365-1609(03)00059-5.
- Ge, X.R., Ren, J.X., Pu, Y.B., Ma, G.W. and Zhu, Y.L. (2001), "Real-in time CT test of the rock meso-damage propagation law", Sci. China (Ser. E), 44(3), 328-336. https://doi.org/10.1007/BF02916710.
- Haeri, H., Sarfarazi, V. and Zhu, Z. (2018), "Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D", Struct. Eng. Mech., 68(4), 507-517. https://doi.org/10.12989/sem.2018.68.4.507.
- Haeri, H., Sarfarazi, V., Zhu, Z. and Moosavi, E. (2019a), "Effect of transversely bedding layer on the biaxial failure mechanism of brittle materials", Struct. Eng. Mech., 69(1), 11-20. https://doi.org/10.12989/sem.2019.69.1.011.
- Haeri, H., Sarfarazi, V., Zhu, Z. and Marji, MF. (2019b), "Experimental and numerical studies of the pre-existing cracks and pores interaction in concrete specimens under compression", Smart Struct. Syst., 23(5), 479-493. https://doi.org/10.12989/sss.2019.23.5.479.
- Hirono, T., Takahashi, M. and Nakashima, S. (2003), "In situ visualization of fluid flow image within deformed rock by X-ray CT", Eng. Geol., 70, 37-46. https://doi.org/10.1016/S0013-7952(03)00074-7.
- Huang, Y.H., Yang, S.Q., Tian, W.L., Zhao, J., Ma, D. and Zhang, C.S. (2017a), "Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment", Arch. Civ. Mech. Eng., 17(4), 912-925. https://doi.org/10.1016/j.acme.2017.03.007.
- Huang, S., Liu, D., Yao, Y., Gan, Q., Cai, Y. and Xu, L.(2017b), "Natural fractures initiation and fracture type prediction in coal reservoir under different in-situ stresses during hydraulic fracturing", J. Nat. Gas. Sci. Eng., 43, 69-80. https://doi.org/10.1016/j.jngse.2017.03.022.
- Huang, Y.H. and Yang, S.Q. (2018a), "Mechanical and cracking behavior of granite containing two coplanar flaws under conventional triaxial compression", Int. J. Damage Mech., 28(4), 590-610. https://doi.org/10.1177/1056789518780214.
- Huang, Y.H., Yang, S.Q., Hall, M.R., Tian, W.L. and Yin, P.F. (2018b), "Experimental study on uniaxial mechanical properties and crack propagation in sandstone containing a single oval cavity", Arch. Civ. Mech. Eng., 18(4), 1359-1373. https://doi.org/10.1016/j.acme.2018.04.005.
- Kawakata, H., Cho, A., Kiyama, T., T. Yanagidani, K. Kusunose, M. Shimada(1999), "Three-dimensional observations of faulting process in Westerly granite under uniaxial and triaxial conditions by X-ray CT scan", Tectonophysics, 313(3), 293-305. https://doi.org/10.1016/S0040-1951(99)00205-X.
- Kou, M.M., Liu, X.R., Tang, S.D. and Wang, Y. (2019a), "3-D X-ray Computed Tomography on Failure Characteristics of Rock-like Materials under Coupled Hydro-Mechanical Loading", Theor. Appl. Fract. Mech., 104, 102396. https://doi.org/10.1016/j.tafmec.2019.102396.
- Kou, M., Han, D., Xiao, C. and Wang, Y. (2019b), "Dynamic fracture instability in brittle materials: Insights from DEM simulations", Struct. Eng. Mech., 71(1), 65-75. https://doi.org/10.12989/sem.2019.71.1.065.
- Kou, M., Lian, Y.J. and Wang, Y.T. (2019c), "Numerical investigations on crack propagation and crack branching in brittle solids under dynamic loading using bond-particle model", Eng. Fract. Mech., 212, 41-56. https://doi.org/10.1016/j.engfracmech.2019.03.012
- Li, X. and Chen, J. (2016), "An extended cohesive damage model for simulating multicrack propagation in fibre composites", Compos. Struct., 143, 1-8. https://doi.org/10.1016/j.compstruct.2016.02.026.
- Li, X. and Chen, J. (2017a), "An extended cohesive damage model for simulating arbitrary damage propagation in engineering materials", Comput. Methods Appl. Mech. Engrg., 315, 744-759. https://doi.org/10.1016/j.cma.2016.11.029.
- Li, X., and Chen, J. (2017b), "A highly efficient prediction of delamination migration in laminated composites using the extended cohesive damage model", Compos. Struct., 160, 712-721. https://doi.org/10.1016/j.compstruct.2016.10.098.
- Liu, Y., Dai, F., Dong, L., Xu, N. and Feng, P. (2018), "Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters", Rock Mech. Rock Eng., 51(1), 47-68. https://doi.org/10.1007/s00603-017-1327-7.
- Meier, T., Rybacki, E., Backers, T. and Dresen, G. (2015), "Influence of bedding angle on borehole stability: a laboratory investigation of transverse isotropic oil shale", Rock Mech. Rock Eng., 48(4), 1535-1546. https://doi.org/10.1007/s00603-014-0654-1.
- Sarfarazi, V. and Haeri, H. (2018), "Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)", Struct. Eng. Mech., 68(5), 537-547. https://doi.org/10.12989/sem.2018.68.5.537.
- Song, Z., Konietzky, H. and Fruhwirt, T. (2018), "Hysteresis energy-based failure indicators for concrete and brittle rocks under the condition of fatigue loading", Int J Fatigue, 114, 298-310. https://doi.org/10.1016/j.ijfatigue.2018.06.001.
- Song, Z., Konietzky, H. and Herbst, M. (2019a), "Bonded-particle model-based simulation of artificial rock subjected to cyclic loading", Acta Geotech., 14, 955-971. https://doi.org/10.1007/s11440-018-0723-9.
- Song, Z., Fruhwirt, T. and Konietzky, H. (2019b), "Inhomogeneous mechanical behaviour of concrete subjected to monotonic and cyclic loading", Int J Fatigue, 105383. https://doi.org/10.1016/j.ijfatigue.2019.105383.
- Silva, B.G.D. and Einstein, H.H. (2014), "Finite element study of fracture initiation in flaws subject to internal fluid pressure and vertical stress". Int. J. Solids Struct., 51(23-24), 4122-4136. https://doi.org/10.1016/j.ijsolstr.2014.08.006.
- Sufian, A., Russell, A.R. (2013), "Microstructural pore changes and energy dissipation in Gosford sandstone during pre-failure loading using X-ray CT", Int. J. Rock Mech. Min. Sci., 57, 119-131. https://doi.org/10.1016/j.ijrmms.2012.07.021.
- Wang, Y., Zhou, X. and Xu, X. (2016), "Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads", Eng. Fract. Mech., 163, 248-273. https://doi.org/10.1016/j.engfracmech.2016.06.013.
- Wang, L., Xu, J. and Wang, J. (2017a), "Static and dynamic Green's functions in peridynamics", J. Elast., 126, 95-125. https://doi.org/10.1007/s10659-016-9583-4.
- Wang, Y., Zhou, X., Shou, Y. (2017b), "The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics", Int. J. Mech. Sci., 128, 614-643. https://doi.org/10.1016/j.ijmecsci.2017.05.019.
- Wang, Y., Li, C.H., Hao, J. and Zhou, R.Q. (2018a), "X-ray micro-tomography for investigation of meso-structural changes and crack evolution in Longmaxi formation shale during compressive deformation", J. Petrol. Sci. Eng, 164, 278-288. https://doi.org/10.1016/j.petrol.2018.01.079.
- Wang, Y., Zhou, X., Wang, Y. and Shou, Y. (2018b), "A 3D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids", Int. J. Solids Struct., 134, 89-115. https://doi.org/10.1016/j.ijsolstr.2017.10.022.
- Wang, L. and Abeyaratne, R. (2018c), "A one-dimensional peridynamic model of defect propagation and its relation to certain other continuum models", J. Mech. Phys. Solids, 116, 334-349. https://doi.org/10.1016/j.jmps.2018.03.028.
- Wang, Y., Liu, B. and Qi, Y. (2018), "A Risk Evaluation Method with an Improved Scale for Tunnel Engineering", Abab. J. Sci. Eng., 43, 2053-2067. https://doi.org/10.1007/s13369-017-2974-4.
- Wang, Y., Li, C.H. and Hu, Y.Z. (2019a), "3D image visualization of meso-structural changes in a bimsoil under uniaxial compression using X-ray computed tomography (CT)", Eng. Geol., 248, 61-69. https://doi.org/10.1016/j.enggeo.2018.11.004.
- Wang, Y., Zhou, X. and Kou, M. (2019b), "An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks", Eur. J. Mech. A-Solid, 73, 282-305. https://doi.org/10.1016/j.euromechsol.2018.09.007.
- Wang, Y.T., Zhou, X.P. and Kou, M.M. (2019c), "Three-dimensional numerical study on the failure characteristics of intermittent fissures under compressive-shear loads", Acta Geotech., 14(4), 1161-1193. https://doi.org/10.1007/s11440-018-0709-7.
- Wang, L., Xu, J., Wang, J. and Karihaloo, B.L. (2019d), "A mechanism-based spatiotemporal non-local constitutive formulation for elastodynamics of composites", Mech. Mater., 128, 105-116. https://doi.org/10.1016/j.mechmat.2018.07.013.
- Wang, S., Li, X., Yao, J., Gong, F., Li, X., Du, K., Tao, M., Huang, L. and Du, S. (2019e), "Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock", Int. J. Rock Mech. Min. Sci., 122, 104063. https://doi.org/10.1016/j.ijrmms.2019.104063.
- Wang, L. and Wang, J. (2019f), "On the Invariance of Governing Equations of Current Nonlocal Theories of Elasticity Under Coordinate Transformation and Displacement Gauge Change", J. Elast., 137, 237-246. https://doi.org/10.1007/s10659-018-09715-7.
- Wang, S., Huang, L. and Li, X. (2020), "Analysis of rockburst triggered by hard rock fragmentation using a conical pick under high uniaxial stress", Tunnel. Undergr. Sp. Tech., 96, 103195. https://doi.org/10.1016/j.tust.2019.103195.
- Wong, R.H.C. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3.
- Wong, L.N.Y. and Einstein, H.H. (2009), "Crack coalescence in molded gypsum and Carrara marble: part I. Macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511. https://doi.org/10.1007/s00603-008-0002-4.
- Yang, S.Q., Ju, Y., Gao, F. and Gui, Y.L. (2016), "Strength, deformability and X-ray micro-CT observations of deeply buried marble under different confining pressures", Rock Mech. Rock Eng., 49(11), 4227-4244. https://doi.org/10.1007/s00603-016-1040-y.
- Yang, S.Q. and Huang, Y.H. (2017), "An experimental study on deformation and failure mechanical behavior of granite containing a single fissure under different confining pressures", Environ. Earth Sci., 76(10), 364. https://doi.org/10.1007/s12665-017-6696-4.
- Yang, S.Q. (2018), "Fracturing mechanism of compressed hollow-cylinder sandstone evaluated by X-ray micro-CT scanning", Rock Mech. Rock Eng., 51(7), 2033-2053. https://doi.org/10.1007/s00603-018-1466-5.
- Yu, L. and Pan, B. (2017), "Color stereo-digital image correlation method using a single 3CCD color camera", Exp. Mech., 57(4), 649-657. https://doi.org/10.1007/s11340-017-0253-7.
- Yu, L., Tao, R. and Lubineau, G. (2019), "Accurate 3D shape, displacement and deformation measurement using a smartphone", Sensors, 19(3), 719. https://doi.org/10.3390/s19030719.
- Yun, T.S., Jeong, Y.J., Kim, K.Y. and Min, K.B. (2013), "Evaluation of rock anisotropy using 3D X-ray computed tomography", Eng. Geol., 163, 11-19. https://doi.org/10.1016/j.enggeo.2013.05.017.
- Zhao, G.F., Russell, A.R., Zhao, X. and Khalili, N. (2014), "Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the Distinct Lattice Spring Model with X-ray micro CT", Int. J. Solids Struct., 51, 1587-1600. https://doi.org/10.1016/j.ijsolstr.2014.01.012.
- Zhang, R., Ai, T., Ren, L. and Li, G. (2019), "Failure characterization of three typical coal-bearing formation rocks using acoustic emission monitoring and X-ray computed tomography techniques", Rock Mech. Rock Eng., 52(6), 1945-1958. https://doi.org/10.1007/s00603-018-1677-9.
- Zhou, X.P., Zhang, Y.X. and Ha, Q.L. (2008), "Real-time computerized tomography (CT) experiments on limestone damage evolution during unloading", Theor. Appl. Fract. Mech., 50(1), 49-56. https://doi.org/10.1016/j.tafmec.2008.04.005.
- Zhou, X.P., Cheng, H. and Feng, Y.F. (2014), "An Experimental Study of Crack Coalescence Behaviour in Rock-like Materials Containing Multiple Flaws Under Uniaxial Compression", Rock Mech. Rock Eng., 47(6), 1961-1986. https://doi.org/10.1007/s00603-013-0511-7.
- Zhuang, X., Chun, J. and Zhu, H. (2014), "A comparative study on unfilled and filled crack propagation for rock-like brittle material", Theor. Appl. Fract. Mech., 72, 110-120. https://doi.org/10.1016/j.tafmec.2014.04.004.
- Zhou, X.P., Wang, Y.T., Zhang, J.Z. and Liu, F.N. (2019), "Fracturing behavior study of three-flawed specimens by uniaxial compression and 3D digital image correlation: sensitivity to brittleness", Rock Mech. Rock Eng., 52(3), 691-718. https://doi.org/10.1007/s00603-018-1600-4.
- Zhou, Z., Cai, X., Ma, D., Chen, L., Wang, S. and Tan L. (2018), "Dynamic tensile properties of sandstone subjected to wetting and drying cycles", Constr. Build Mater., 182: 215-232. https://doi.org/10.1016/j.conbuildmat.2018.06.056.
- Zhou, Z., Cai, X., Li, X., Cao, W. and Du, X. (2019), "Dynamic Response and Energy Evolution of Sandstone Under Coupled Static-Dynamic Compression: Insights from Experimental Study into Deep Rock Engineering Applications", Rock Mech. Rock Eng., 1-27. https://doi.org/10.1007/s00603-019-01980-9.