• 제목/요약/키워드: rock fissures

검색결과 28건 처리시간 0.027초

Experimental and numerical study on the fracture coalescence behavior of rock-like materials containing two non-coplanar filled fissures under uniaxial compression

  • Tian, Wen-Ling;Yang, Sheng-Qi
    • Geomechanics and Engineering
    • /
    • 제12권3호
    • /
    • pp.541-560
    • /
    • 2017
  • In this research, experimental and numerical simulations were adopted to investigate the effects of ligament angle on compressive strength and failure mode of rock-like material specimens containing two non-coplanar filled fissures under uniaxial compression. The experimental results show that with the increase of ligament angle, the compressive strength decreases to a nadir at the ligament angle of $60^{\circ}$, before increasing to the maximum at the ligament angle of $120^{\circ}$, while the elastic modulus is not obviously related to the ligament angle. The shear coalescence type easily occurred when ${\alpha}$ < ${\beta}$, although having the same degree difference between the angle of ligament and fissure. Numerical simulations using $PFC^{2D}$ were performed for flawed specimens under uniaxial compression, and the results are in good consistency with the experimental results. By analyzing the crack evolution process and parallel bond force field of rock-like material specimen containing two non-coplanar filled fissures, we can conclude that the coalescence and propagation of crack are mainly derived from parallel bond force, and the crack initiation and propagation also affect the distribution of parallel bond force. Finally, the displacement vectors in ligament region were used to identify the type of coalescence, and the results coincided with that obtained by analyzing parallel bond force field. These experimental and numerical results are expected to improve the understanding of the mechanism of flawed rock engineering structures.

프락탈 모델을 적용한 우리나라 균열 암반 대수층의 수리상수

  • 함세영
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 1995년도 정기총회 및 학술발표회
    • /
    • pp.121-134
    • /
    • 1995
  • 대수층의 수리상수를 산출하기 위한 양수시험 분석에 이용되는 가장 기본적인 이론은 Theis 이론이다. Theis 이론에서는 지하수의 흐름은 2차원의 방사상 흐름이다. 그러나, 1차 공극으로 이루어진 충적층 대수층이나 사암과 같은 다공질 대수층과는 달리 기반암내에 발달되어 있는 균열 대수층은 균열(fractures), 열극(fissures) 또는 단층과 같은 2차 공극으로 이루어져 있다. (중략)

  • PDF

Damage evolution of red-bed soft rock: Progressive change from meso-texture to macro-deformation

  • Guangjun Cui;Cuiying Zhou;Zhen Liu;Lihai Zhang
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.121-130
    • /
    • 2024
  • Many foundation projects are built on red-bed soft rocks, and the damage evolution of this kind of rocks affects the safety of these projects. At present, there is insufficient research on the damage evolution of red-bed soft rocks, especially the progressive process from mesoscopic texture change to macroscopic elastoplastic deformation. Therefore, based on the dual-porosity characteristics of pores and fissures in soft rock, we adopted a cellular automata model to simulate the propagation of these voids in soft rocks under an external load. Further, we established a macro-mesoscopic damage model of red-bed soft rocks, and its reliability was verified by tests. The results indicate that the relationship between the number and voids size conformed to a quartic polynomial, whereas the relationship between the damage variable and damage porosity conformed to a logistic curve. The damage porosity was affected by dual-porosity parameters such as the fractal dimension of pores and fissures. We verified the reliability of the model by comparing the test results with an established damage model. Our research results described the progressive process from mesoscopic texture change to macroscopic elastoplastic deformation and provided a theoretical basis for the damage evolution of these rocks.

암반 불연속면의 공학적 문제-(General Report) (Engineering Problems in Rock Discontinuity)

  • 신희순
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.161-184
    • /
    • 2001
  • Rock masses usually contain such features as bedding planes, faults, fissures, fractures, joints and other mechanical defects which, although formed from a wide range of geological processes, posses the common characteristics of low shear strength, negligible tensile strength and high fluid conductivity compared with the surrounding rock material. In the engineering context here, the discontinuities can be the single most important factor governing the deformability, strength and permeability of the rock mass. Moreover, a particularly large and persistent discontinuity could critically affect the stability of any surface or underground excavation. For these reasons, it is necessary to develop a thorough understanding of the geometrical, mechanical and hydrological properties of discontinuities and the way in which these will affect rock mechanics and hence rock engineering.

  • PDF

Ultrasonically enhancing flowability of cement grout for reinforcing rock joint in deep underground

  • Junho Moon;Inkook Yoon;Minjin Kim;Junsu Lee;Younguk Kim
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.211-219
    • /
    • 2023
  • This study analyzes the changes in the physical properties of grout by irradiating it with ultrasonic energy and assesses the injectability of the grout into deep rock fractures. The materials used in the research are OPC (Ordinary Portland Cement) and MC (Micro Cement), and are irradiated depending on the water/cement ratio. After irradiating the grout with ultrasonic energy, viscosity, compressive strength, and particle size are analyzed, and the results of the particle size analysis were applied to Nick Barton's theory to evaluate the injectability of the grout into deep rock fractures under those conditions. It was found that the viscosity of the grout decreased after ultrasonic wave irradiation, and the rate of viscosity reduction tended to decrease as the water/cement ratio increased. Additionally, an increase in compressive strength and a decrease in particle size were observed, indicating that the grout irradiated with ultrasonic energy was more effective for injection into rock fractures.

Dynamic mechanism of rock mass sliding and identification of key blocks in multi-fracture rock mass

  • Jinhai Zhao;Qi Liu;Changbao Jiang;Zhang Shupeng;Zhu Weilong;Ma Hailong
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.375-385
    • /
    • 2023
  • There are many joint fissures distributed in the engineering rock mass. In the process of geological history, the underground rock mass undergoes strong geological processes, and undergoes complex geological processes such as fracture breeding, expansion, recementation, and re-expansion. In this paper, the damage-stick-slip process (DSSP), an analysis model used for rock mass failure slip, was established to examine the master control and time-dependent mechanical properties of the new and primary fractures of a multi-fractured rock mass under the action of stress loading. The experimental system for the recemented multi-fractured rock mass was developed to validate the above theory. First, a rock mass failure test was conducted. Then, the failure stress state was kept constant, and the fractured rock mass was grouted and cemented. A secondary loading was applied until the grouted mass reached the intended strength to investigate the bearing capacity of the recemented multi-fractured rock mass, and an acoustic emission (AE) system was used to monitor AE events and the update of damage energy. The results show that the initial fracture angle and direction had a significant effect on the re-failure process of the cement rock mass; Compared with the monitoring results of the acoustic emission (AE) measurements, the master control surface, key blocks and other control factors in the multi-fractured rock mass were obtained; The triangular shaped block in rock mass plays an important role in the stress and displacement change of multi-fracture rock mass and the long fissure and the fractures with close fracture tip are easier to activate, and the position where the longer fractures intersect with the smaller fractures is easier to generate new fractures. The results are of great significance to a multi-block structure, which affects the safety of underground coal mining.

처분장 Far-field에서의 핵종이동 수치 모델 (A Numerical Model for Nuclide Migration in the Far-field of the Repository)

  • Lee, Youn-Myoung;Lee, Han-Soo;Park, Heui-Joo;Cho, Won-Jin;Han, Kyong-Won;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • 제21권4호
    • /
    • pp.267-276
    • /
    • 1989
  • 중저준위 방사성 폐기물 처분 안전성 평가에 이용될 수 있는 유한 차분법에 의한 수치모델을 개발하였다. 이 모델은 처분장이 암반내에 위치한 경우에 대하여 처분장 주위 지하 암반 매질에서의 핵종의 이동을 기술하는 것으로 암반내의 단일한 균열으로의 지하수에 의한 이동과 균열에 수직한 방향으로의 확산을 고려하여 일차원적으로 해석하였다. 수치모델은 해석해와 병행하여 처분장 안전성 평가에 있어서 유용하게 이용될 수 있는 것으로 보다 실제적인 경계조건을 사용할 수 있게 하고, 불균질한 암반매질에 대해 다중매질 모델링을 제공한다. 수치모델의 검증을 위하여 균열에서의 Sr-90 농도 Profile을 구하여 해석해와 비교하였고, 몇몇 경계 조건에 따른 영향을 비교하고 암반매질을 파라미터 값이 단계적으로 변하는 이중 매질에 대하여 확장하였다.

  • PDF

일본 오이타현 우스키 마애불상군의 재질특성 및 손상도 평가 (Deterioration Evaluation and Material Characteristics of the Usuki Stone Buddha Statues in Oita, Japan)

  • 조지현;이찬희;김지영;마사유키 모리;이명성;김사덕
    • 보존과학회지
    • /
    • 제28권1호
    • /
    • pp.39-52
    • /
    • 2012
  • 일본 오이타현에 위치한 우스키 마애불상군은 12~14세기에 걸쳐 조성된 것으로 알려져 있으며 총 60여개의 석불군으로 이루어진 일본의 대표적인 석조문화재이다. 이 불상군을 이루는 기반암은 아소-4 화산쇄설암 층군에 포함되는 암회색 응회암이다. 이 석불군의 호키 I군과 후루조노를 대상으로 훼손지도를 작성한 결과, 호키 I군에서는 균열 약 121개, 염풍화로 인한 박락 19%, 흑색변색 5%, 생물학적 훼손 51%로 나타났고, 후루조노는 균열 약 48개, 염풍화로 인한 박락 24%, 생물학적 훼손 41%로 산출되었다. 암반에 균열이 집중적으로 분포하는 호키 I군에서는 사면안정성 평가를 통해 전체적으로 평면, 전도 및 쐐기파괴의 가능성이 확인되었다. 또한 초음파속도 측정을 수행한 결과, 애염명왕(기반암)은 1,520~2,794(평균 2,298)m/s를 보였으며, 동종암석으로 교체된 아미타여래좌상의 대좌(신부재)는 3,242~4,141(평균 3,813)m/s로 측정되어, 이들은 약 1,600m/s의 물성차이를 보였다. 따라서 적용 가능한 범위 내에서 균열, 공동, 탈락, 마모 및 박리박락 부분에 대한 보존처리 및 보강이 우선적으로 시행되어야 할 것이다.

Oxygen Isotope Study of Mulgeum, Yangseong, Maeri and Kimhae Iron Ore Deposits in Gyeongnam Province, Korea

  • Woo, Young-Kyun;Savin, Samuel M.
    • 한국지구과학회지
    • /
    • 제23권1호
    • /
    • pp.97-104
    • /
    • 2002
  • Mulgeum, Yangseong, Maeri and Kimhae iron ore deposits in Gyeongnam Province are hydrothermal skarn type magnetite ore deposits in propylitized andesitic rock near the contact with Cretaceous Masanite. Symmetrical zoned skarns are commonly developed around the magnetite veins. The skarn zones away from the vein are quartz-garnet skarn, epidote skarn and epidote-orthoclase skarn. Oxygen isotope analyses of coexisting minerals from andesitic rock, Masanite and major skarn zones, and of magnetite, hematite and quartz were conducted to provide the information on the formation temperature, the origin and the evolution of the hydrothermal solution forming the iron ore deposits. Becoming more distant from the ore vein, temperatures of skarn zones represent the decreasing tendency, but most ${\delta}^{18}O$ and ${\delta}^{18}O_{H2O}$ values of skarn minerals represent no variation trend, and also the values are relatively low. Judging from all the isotopic data from the ore deposits, the major source of hydrothermal solution altering the skarn zones and precipitating the ore bodies was magmatic water derived from the deep seated Masanite. This high temperature hydrothermal solution rising through the fissures of propylitized andesitic rock was mixed with some meteoric water, and occurred the extensive isotopic exchange with the propylitized andesitic rock, and formed the skarns. During these processes, the temperature and ${\delta}^{18}O_{H2O}$ value of hydrothermal solution were lowered gradually. At the main stage of iron ore precipitation, because all the alteration was already finished, the new rising hydrothermal solution formed only the magnetite ore without oxygen isotopic exchange with the wall rock.

개별요소법을 이용한 불연속 암반내 지하공동의 변형 거동 해석 (Analysis of Deformation Behavior of Underground Caverns in a Discontinuous Rock Mass Using the Distinct Element Method)

  • 정완교;임한욱
    • 산업기술연구
    • /
    • 제23권A호
    • /
    • pp.69-81
    • /
    • 2003
  • Numerical analysis is important for the design, construction and maintenance of large caverns. The rock mass contains generally discontinuities such as faults, joints and fissures. The mechanical behavior and geometric characteristics of these discontinuities would have a significant impact on the stability of the caverns. In this research the Distinct Element Method(DEM) was used to analyze the structural stability of the large cavern. The Barton-Bandis Joint Model (B-B J.M) was used as a constitutive model for the joint. In addition, two different cases 1) analysis with a support system and 2) analysis with no support system, were analyzed to optimize a support system and to investigate reinforcing effects of a support system. The most significant parameters of in-situ stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. Displacement (horizontal, joint shear), maximum joint opening, maximum and minimum principal stresses, range of relaxed zone, rockbolt axial forces and shotcrete stresses were calculated at each excavation stage. As a result of analysis the calculated values proved to be under the allowable value Rockbolts also proved to be an efficient support measure to control joint shear displacement which had significant effects on extending the relaxed zone. As a consequence, the structural stability of the cavern was assured with an appropriate support system.

  • PDF