• Title/Summary/Keyword: robustness analysis of the stability

Search Result 150, Processing Time 0.028 seconds

STABILIZED-PENALIZED COLLOCATED FINITE VOLUME SCHEME FOR INCOMPRESSIBLE BIOFLUID FLOWS

  • Kechkar, Nasserdine;Louaar, Mohammed
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.519-548
    • /
    • 2022
  • In this paper, a stabilized-penalized collocated finite volume (SPCFV) scheme is developed and studied for the stationary generalized Navier-Stokes equations with mixed Dirichlet-traction boundary conditions modelling an incompressible biological fluid flow. This method is based on the lowest order approximation (piecewise constants) for both velocity and pressure unknowns. The stabilization-penalization is performed by adding discrete pressure terms to the approximate formulation. These simultaneously involve discrete jump pressures through the interior volume-boundaries and discrete pressures of volumes on the domain boundary. Stability, existence and uniqueness of discrete solutions are established. Moreover, a convergence analysis of the nonlinear solver is also provided. Numerical results from model tests are performed to demonstrate the stability, optimal convergence in the usual L2 and discrete H1 norms as well as robustness of the proposed scheme with respect to the choice of the given traction vector.

Stability Analysis of Decentralized PVFC Algorithm for Cooperative Mobile Robotic Systems

  • Suh, Jin-Ho;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1909-1914
    • /
    • 2004
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified behaviorally in terms of a velocity field, and the closed-loop was passive with respect to a supply rate given by the environment input. However the PVFC was only applied to a single manipulator, the proposed control law was derived geometrically, and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a method to apply a decentralized control algorithm to cooperative 3-wheeled mobile robots whose subsystem is under nonholonomic constraints and which convey a common rigid object in a horizontal plain. Moreover it is shown that multiple robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative mobile robot systems.

  • PDF

A Robust Attitude Controller Design Using Lyapunov Redesign Technique for Spacecraft (Lyapunov 재설계 기법을 이용한 우주비행체 강인 자세제어기 설계)

  • Nam, Heon-Seong;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.313-318
    • /
    • 2002
  • A robust attitude controller using Lyapunov redesign technique for spacecraft is proposed. In this controller, qua- ternion feedback is considered to have the attitude maneuver capability very close to the eigen-axis rotation. The controller consists of three parts: the nominal feedback parts which is a PD-type controller for the nominal system without uncertainties, the additional term compensating for the gyroscopic motion, and the third part for ensuring robustness to uncertainties. Lyapunov stability criteria is applied to stability analysis. The performance of the proposed controller is demonstrated via computer simulation.

Design of an RBFN-based Adaptive Tracking Controller for an Uncertain Mobile Robot (불확실한 이동 로봇에 대한 RBFN 기반 적응 추종 제어기의 설계)

  • Shin, Jin-Ho;Baek, Woon-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1238-1245
    • /
    • 2014
  • This paper proposes an RBFN-based adaptive tracking controller for an electrically driven mobile robot with parametric uncertainties and external disturbances. A mobile robot model considered in this paper includes all models of the robot body and actuators with uncertain kinematic and dynamic parameters, and uncertain frictions and external disturbances. The proposed controller consists of an RBFN(Radial Basis Function Network) and a robust adaptive controller. The presented RBFN is used to approximate unknown nonlinear robot dynamic functions. The proposed controller is adjusted by the adaptation laws obtained through the Lyapunov stability analysis. The proposed control scheme does not a priori need the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. Also, nominal parameter values are not required in the controller. The global stability of the closed-loop robot control system is guaranteed using the Lyapunov stability theory. Simulation results show the validity and robustness of the proposed control scheme.

Design Analysis to Enhance Rotordynamic Stability of High-Speed Lightweight Centrifugal Compressor - Part I: Effects of Bearing Designs (프로세스 고속 경량 원심 압축기의 로터다이나믹 안정성 강화를 위한 설계해석 - Part I: 베어링 설계의 영향)

  • Lee, An Sung
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.386-391
    • /
    • 2013
  • Part I of this study analyzed the effects of tilting pad bearing designs to reduce the stiffness of the bearings used in a process high-speed lightweight centrifugal compressor intended for a domestic refinery use. This was done in an attempt to enhance the robustness of its rotordynamic stability against possible aerodynamic cross-coupled stiffness. The bearing design variables reviewed were the clearances, LBPs, LOPs, and preloads. The results showed that there was practically no difference between the LBP and LOP designs in terms of the bearing stiffness, because the compressor rotor was lightweight and the bearings had relatively high preloads. Increasing both the machined and assembled clearances in bearing designs has resulted in the bearing stiffness being greatly reduced. In addition, it has been confirmed that an additional reduction in the bearing stiffness can be obtained for given fixed machined clearances by decreasing the preloads, i.e., by increasing the assembled clearances.

Comparative Study on Hydrogen Behavior in InGaZnO Thin Film Transistors with a SiO2/SiNx/SiO2 Buffer on Polyimide and Glass Substrates

  • Han, Ki-Lim;Cho, Hyeon-Su;Ok, Kyung-Chul;Oh, Saeroonter;Park, Jin-Seong
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.749-754
    • /
    • 2018
  • Previous studies have reported on the mechanical robustness and chemical stability of flexible amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) on plastic substrates both in flat and curved states. In this study, we investigate how the polyimide (PI) substrate affects hydrogen concentration in the a-IGZO layer, which subsequently influences the device performance and stability under bias-temperature-stress. Hydrogen increases the carrier concentration in the active layer, but it also electrically deactivates intrinsic defects depending on its concentration. The influence of hydrogen varies between the TFTs fabricated on a glass substrate to those on a PI substrate. Hydrogen concentration is 5% lower in devices on a PI substrate after annealing, which increases the hysteresis characteristics from 0.22 to 0.55 V and also the threshold voltage shift under positive bias temperature stress by 2 ${\times}$ compared to the devices on a glass substrate. Hence, the analysis and control of hydrogen flux is crucial to maintaining good device performance and stability of a-IGZO TFTs.

Advances in Load-Sharing Parameter Estimation for Reliability Systems (시스템 신뢰도 계산을 위한 로드쉐어링 모수 추정에 관한 고찰)

  • Hyoungtae Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.3
    • /
    • pp.31-38
    • /
    • 2024
  • This paper chronicles the evolution of load-sharing parameter estimation methodologies, with a particular focus on the significant contributions made by Kim and Kvam (2004) and Park (2012). Kim and Kvam's pioneering work underscored the inherent challenges in deriving closed-form solutions for load-share parameters, which necessitated the use of sophisticated numerical optimization techniques. Park's research, on the other hand, provided groundbreaking closed-form solutions and extended the theoretical framework to accommodate more general distributions of component lifetimes. This was achieved by incorporating EM-type methods for maximum likelihood estimation, which represented a significant advancement in the field. Unlike previous efforts, this paper zeroes in on the specific characteristics and advantages of closed-form solutions for load-share parameters within reliability systems. Much like the basic Economic Order Quantity (EOQ) model enhances the understanding of real-life inventory systems dynamics, our analysis aims to thoroughly explore the conditions under which these closed-form solutions are valid. We investigate their stability, robustness, and applicability to various types of systems. Through this comprehensive study, we aspire to provide a deep understanding of the practical implications and potential benefits of these solutions. Building on previous advancements, our research further examines the robustness of these solutions in diverse reliability contexts, aiming to shed light on their practical relevance and utility in real-world applications.

Finite-Time Nonlinear Disturbance Observer Based Discretized Integral Sliding Mode Control for PMSM Drives

  • Zheng, Changming;Zhang, Jiasheng
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1075-1085
    • /
    • 2018
  • To deal with the operation performance degradation of permanent magnet synchronous machine (PMSM) drives with uncertainties and unmodeled dynamics, this paper presents a finite-time nonlinear disturbance observer (FTNDO) based discretized integral sliding mode (DISM) composite control scheme. Based on the reaching-law approach, a DISM speed controller featuring a superior dynamic quality and global robustness against disturbances is constructed. This controller can avoid the reaching phase and overlarge control action. In addition, a sliding mode differentiator based FTNDO is devised and extended to the discrete-time domain for disturbance estimation. The attractive features of the FTNDO are that it can provide a finite-time converging estimation and alleviate the chattering effect in conventional sliding mode observers, while retaining robustness to parameter variations. By feeding the estimate forward to the pre-stage DISM controller, both disturbances and chattering can be significantly suppressed. Moreover, considering the estimation error of a FTNDO caused by discrete sampling, a stability analysis of the composite controller is discussed. Experimental results validate the superiority of the presented scheme.

Fast Single-Phase All Digital Phase-Locked Loop for Grid Synchronization under Distorted Grid Conditions

  • Zhang, Peiyong;Fang, Haixia;Li, Yike;Feng, Chenhui
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1523-1535
    • /
    • 2018
  • High-performance Phase-Locked Loops (PLLs) are critical for grid synchronization in grid-tied power electronic applications. In this paper, a new single-phase All Digital Phase-Locked Loop (ADPLL) is proposed. It features fast transient response and good robustness under distorted grid conditions. It is designed for Field Programmable Gate Array (FPGA) implementation. As a result, a high sampling frequency of 1MHz can be obtained. In addition, a new OSG is adopted to track the power frequency, improve the harmonic rejection and remove the dc offset. Unlike previous methods, it avoids extra feedback loop, which results in an enlarged system bandwidth, enhanced stability and improved dynamic performance. In this case, a new parameter optimization method with consideration of loop delay is employed to achieve a fast dynamic response and guarantee accuracy. The Phase Detector (PD) and Voltage Controlled Oscillator (VCO) are realized by a Coordinate Rotation Digital Computer (CORDIC) algorithm and a Direct Digital Synthesis (DDS) block, respectively. The whole PLL system is finally produced on a FPGA. A theoretical analysis and experiments under various distorted grid conditions, including voltage sag, phase jump, frequency step, harmonics distortion, dc offset and combined disturbances, are also presented to verify the fast dynamic response and good robustness of the ADPLL.

Intelligent PID Controller Design Using Root-Locus Analysis for Systems with Parameter Uncertainties (불확실한 파라미터를 갖는 시스템을 위한 근궤적법을 이용한 지능형 PID 제어기 설계)

  • Shin, Young-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.67-76
    • /
    • 2008
  • In this research, a simple technique for designing PID controller, which guarantees robust stability for two-mass systems with parameter uncertainties as well as rigid-body behavior and zero steady-state error,is described. As well, such a PID controller is designed to mate two important frequencies, at which the given system is excited, very close so that an appropriate reference profile generated by using command shaping techniques can cover those two frequencies. Root-locus analysis. which shows traces of closed-loop poles for the given system, is used to design this PID controller. Finally, feedforward controller is added to improve tracking performance of the closed-loop system. Simulation for a system with a flexible mode and parameter uncertainties is executed to prove the feasibility of this technique.