• Title/Summary/Keyword: robustness analysis of the stability

Search Result 150, Processing Time 0.029 seconds

Robust and Efficient LU-SGS Scheme on Unstructured Meshes: Part I - Implicit Operator (비정렬 격자계에서 강건하고 효율적인 LU-SGS 기법 개발: Part I - 내재적 연산자)

  • Kim Joo Sung;Kwon Oh Joon
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.26-38
    • /
    • 2004
  • A study has been made for the investigation of the robustness and convergence of various implicit operators of the LU-SGS scheme using linear stability analysis. It is shown that the behavior of the implicit operator is not determined by its own characteristics, but is determined relatively depending on the dissipative property of the explicit operator. It is also shown that, as the dissipation level of the implicit operator increases, the robustness of the scheme increases, but the convergence rate can be deteriorated due to the excessive dissipation. The numerical results demonstrate that the dissipation level of the impliict operator needs to be higher than that of the explicit operator for computing stiff problems.

Radial Type Satellite Attitude Controller Design using LMI Method and Robustness Analysis (LMI 방법을 이용한 방사형 인공위성 제어로직 설계 및 강건성 분석)

  • Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.998-1007
    • /
    • 2015
  • The $H_{\infty}$ control theory using LMI method is applied to design an attitude controller of radial type satellite that has strongly coupled channels due to the large product of inertia. It is observed that the cross-over frequency of open-loop with $H_{\infty}$ controller is lower than that of open-loop without controller, which is not typical phenomenon in an optimal control design result: it is interpreted that due to a large product of inertia, there is certain limit in increasing agility of satellite by just tuning weighting function. ${\mu}$-analysis is performed to verify the stability and performance robustness with the assumption of +/-5% MOI variation. ${\mu}$-analysis result shows that the variation of principal MOI degrades the stability and performance robustness more than the variation of POI does.

A Study on the Improvement of Robustness of a Direct Adaptive Controller (직접 적응 제어기의강인성 및 성능의 개선에 관한연구)

  • 김응석;김홍필;양해원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.6
    • /
    • pp.606-614
    • /
    • 1991
  • A robust direct adaptive controller with respect to additive and multiplicative unmodeled dynamics is designed. A new term, proportional to the product of the bounded tracking error and normalizing signal, is added to the conventional control input for improvement of robustness and performances of an adaptive system. It is shown by the mathematical analysis and simulation results that the stability of the closed loop system is guaranteed and the performance of the system is improved.

Robustness of Independent Modal Space Control for Parameter and Modal Filter Errors (파라메터오차 및 모달필터오차에 대한 독립모달공간 제어기법의 강인성 해석)

  • Hwang, Jai-Hyuk;Kim, Joon-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3549-3559
    • /
    • 1996
  • In this study, the effect of parameter and modal filter errors on the vibration control characteristics of flexible structures is analyzed for IMSC ( Independent Modal Space Control). If the control force is designed on the basis of the mathematical model with the parameter and modal filter errors, the closed-loop performance of the vibration control system will be degraded depending on the magnitude of the errors. An asymptotic stability condition of the system with parameter and modal filter errors has more significant effect on the stability condition of the system with parameter and modal filter errors has been drived using Lyapunov approach. It has been found that modal filter error has more significant effect on the stability of closed-loop system than parameter error does. The extent of the response deviation of the closed-loop system is also derived and evaluated using operator thchniques.

A Performance Analysis of AM-SCS-MMA Adaptive Equalization Algorithm based on the Minimum Disturbance Technique (Minimum Disturbance 기법을 적용한 AM-SCS-MMA 적응 등화 알고리즘의 성능 해석)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.81-87
    • /
    • 2016
  • This paper analysis the AM-SCS-MMA (Adaptive Modulus-Soft Constraint Satisfaction-MMA) based on the adaptive modulus and minimus-disturbance technique in order to improve the stability and robustness in low signal to noise power of current MMA adaptive equalization algorithm. In AM-SCS-MMA, it updates the filter coefficient applying the adaptive modulus and minimum-disturbance technique of deterministic optimization problem instead of LMS or gradient descend algorithm for obtain the minimize the cost function of adaptive equalization. It is possible to improve the equalizer filter stability, robustness to the various noise characteristic and simultaneous reducing the intersymbol interference due to the amplitude and phase distortion occurred at channel. The computer simulation were performed for confirming the improved performance of SCS-MMA. For these, the output signal constellation of equalizer, residual isi, MSE, EMSE (Excess MSE) which means the channel traking capability and SER which means the robustness were applied. As a result of computer simulation, the AM-SCS-MMA have slow convergence time and less residual quantities after steady state, more good robustness in the poor signal to noise ratio, but poor in channel tracking capabilities was confirmed than MMA.

$H{\infty}$ optimal controller robustness and performance improvement by frequency domain analysis of open loop transfer function (개루프 전달함수 주파수영역 해석에 의한 $H{\infty}$ 최적 제어기의 견실성 및 성능 개선)

  • Kim, Y.K.;Ryu, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.761-763
    • /
    • 1999
  • When the controller designed by the $H{\infty}$ control technique is applied to the object system, sometimes the controller does not satisfy the robust stability and robust performance but only satisfy the nominal performance. In this paper, we derive the region on the frequency response curve of the open-loop transfer function which satisfy the robustness and robust performance of the designed controller. We also derive the region for the suitableness of the weighting function on the frequency response curve of the weighting function. We showed that the robust stability and the robust performance of the $H{\infty}$ optimal control)or by applying the designed controller on an electromechanical actuator system could be improved by determining parameter ${\gamma}$ and weighting function gain ${\alpha}$ using the derived region.

  • PDF

Design of Force Rebalance Loop for Silicon Accelerometer using Parametric Robust Control Technique (변수적 강인해석기법을 이용한 실리콘 가속도계의 재평형루프 설계)

  • Seong, Sang-Gyeong;Lee, Jang-Gyu;Gang, Tae-Sam
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.124-132
    • /
    • 2000
  • In this paper, presented are an active surface-micromachined silicon accelerometer, force rebalance loop using parametric robust control method, and experimental results with a real micromachined accelerometer. And finally, a robust controller of the form of PID compensator was designed to construct force rebalance loop. Through the frequency response analysis, it is shown that the loop guarantees appropriate stability and robustness. Experiments with a real accelerometer demonstrated that the proposed loop effectively controls the position of the accelerometer's proof mass. It also demonstrated that the resolution of the fabricated accelerometer is better than 1mg. Compared with a commercial accelerometer the proposed force rebalance silicon accelerometer showed better performances.

  • PDF

Robustness Analysis of Predictor Feedback Controller for Discrete-Time Linear Systems with Input Delays (입력지연을 갖는 이산시간 선형시스템을 위한 예측기 피드백 제어기의 강인성 해석)

  • Choi, Joon-Young
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1265-1272
    • /
    • 2019
  • We analyze the robustness of the existing predictor feedback controller for discrete-time linear systems with constant input delays against the structured model uncertainty. By modeling the constant input delay with a first-order PdE (Partial difference Equation), we replace the input delay with the PdE states. By applying a backstepping transformation, we build a target system that enables to construct an explicit Lyapunov function. Constructing the explicit Lyapunov function that covers the entire state variables, we prove the existence of an allowable maximum size of the structured model uncertainty to maintain stability and establish the robustness of the predictor feedback controller. The numerical example demonstrates that the stability of closed-loop system is maintained in the presence of the structured model uncertainty, and verifies the robustness of the predictor feedback controller.

Robust adaptive control by single parameter adaptation and the stability analysis (단일계수적응을 통한 강건한 적응제어시의 설계및 안정성 해석)

  • 오준호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.331-338
    • /
    • 1990
  • In adaptive control, the lack of persistent and rich excitation causes the estimated parameters to drift, which degrade the performance of the system and may introduces instability to the system in a stochastic environment. To solve the problem of the parameter drift, the concept of single parameter adaptation is presented. For the parameter identification, a priori error is directly used for adaptation error. The structure of the controller is based upon the minimum variance control technique. The stability and robustness analysis is carried out by the sector stability theorem for the second order system. The computer simulation is performed to justify the theoretical analysis for the various cases.

A New Excitation Control for Multimachine Power Systems II: Robustness and Disturbance Attenuation Analysis

  • Psillakis Haris E.;Alexandridis Antonio T.
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.288-295
    • /
    • 2005
  • In this paper a new adaptive, decentralized excitation control scheme proposed to enhance the transient stability of multimachine power systems is extensively analyzed with respect to its robustness and disturbance attenuation. As shown in the paper, both robustness and disturbance attenuation can be effectively improved by suitably selecting the design parameters of the proposed controller. Particularly, some simple rules for the selection of the control gains and the adaptation parameters are extracted which, as it is proven, may be essential for the system performance. Simulation tests on a two generator infinite bus power system absolutely confirm the theoretical results.