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A New Excitation Control for Multimachine Power Systems
II: Robustness and Disturbance Attenuation Analysis

Haris E. Psillakis and Antonio T. Alexandridis

Abstract: In this paper a new adaptive, decentralized excitation control scheme proposed to
enhance the transient stability of multimachine power systems is extensively analyzed with
respect to its robustness and disturbance attenuation. As shown in the paper, both robustness
and disturbance attenuation can be effectively improved by suitably selecting the design
parameters of the proposed controller. Particularly, some simple rules for the selection of the
control gains and the adaptation parameters are extracted which, as it is proven, may be
essential for the system performance. Simulation tests on a two generator infinite bus power

system absolutely confirm the theoretical results.
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1. INTRODUCTION

The design of the excitation control of power
system generators has been given great attention by
many researchers. Designs based on conventional and
advanced nonlinear control theory have been
effectively used. For details, refer to [1] and the
references therein. However, in many cases the design
approach is generally developed on mathematical
models with fixed structure and parameters without
considering  system uncertainties or external
disturbances. This may be crucial for the system
performance and the controller effectiveness [2,3].

In this paper, we examine a new decentralized,
adaptive excitation control as proposed in the
companion paper [1], assuming that the system
operates under parameter uncertainties as well as
external disturbances. First, we analyze in detail the
proposed controller performance under these
circumstances. In both cases we result in some simple
rules (Theorems 2 and 3) that indicate that by
regulating some design parameters of the proposed
controller we can significantly improve the robustness
and the disturbance attenuation capability of the
system. These rules are taken into account in the
design of such controllers for an illustrative example
of a multimachine system, and their effectiveness is
tested by extensive simulations. As it is expected from
the theoretical analysis, the proposed control scheme
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appears to be stable in the face of parameter
uncertainties and external disturbances while it
verifies robustness and significant disturbance
attenuation capability by providing highly satisfactory
responses.

2. PRELIMINARIES

For an n-generator power system, the dynamic
model of the i-th generator is [1]

5;(t)=w;(t)-ay, (1)

(1) =~ (01 (1)) + 5 (B = Pa (1), )
——(Ex (1)~ E4 (1)), (3)

Egi(t)= Egi (6)+(xgr = x5 ) 1 () “)
k t), (5)

1, (t)=> Ey (Bl-j sin &;; (1) + Gy cos & (t)) s (6)

j=l
14 (1)= ilE[y (G,»j sin & (t)—Bl-j cos &y (t)), @)
=
Py ()= Egi (¢)14: (1), (®)
Qe = Egil 4i (1) s ©)
Ei ()= Xaail 5 (1) » (10)
Vigi (1) = Egi (1) = xa: 4 (1) (11
Viai (1) = xail4i (1) (12)
Vi (1) = Vigi® (1) + Via (2). (13)
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The symbols used in the above equations are
explained in the Appendix of [1]. '

Using the backstepping design and the feedback
linearization technique, as it is explained in the
companion paper [1], we transform the original
system into a partially linear system with state
variables z;, z;5,2;3:

N = A5I
Zip = Aa)l- + cilAé}
M.
zi3 = AR, _w—l(1+cilci2)A§i (14)

0

M, D
- _l[cil T~ _lewi
(2 Mi

and we result in the following excitation control law
for each machine

To:
Eg(t)= —Ido’ (kjAS; + kjpAw; — kAP, +v;) . (15)
qi
Controller (15) is fully decentralized since it uses only

local measurements (a method for measuring the
power angle §; can be found in [4]).

The constant gains are given by

Mi
ki =—tei(1+enen),
@y

M, D, D,
kg =—4|| ez === || ¢y + 0 ——F |+ecnen +11, (16
i2 @ {[ i3 M;]( il i2 Mi] 11412 :| ( )

k +ep, + D;
A = C: C; Ciqn ———
i3 il i2 i3 Mi
with ¢;;, ¢;p, ¢z atbitrary positive scalars.

Input v; =v; (t) is a controlled external input

obtained by an adaptation mechanism as described in
Theorem 1 of [1], i.e.

v; =

2
P , (17)
pilzi3l+li

where /; a small positive scalar and

(18)

Zij

3 ~
p; =leis = Al|zis] + 6 (1) + Z‘fij (1)
j=1

with 4 a constant related to the adaptive control
design through the following estimates’ update laws

21,
, If ’Zi3l>\/%7

0, otherwise

&i(l): ai‘ZB (19)

o; >0 i=12,...,n with 6‘i(to)20,

. 21,
s if |Zi3|>\/;i’

0, otherwise

vy >0 j=123 i=12...n¢(t)>0.

2 1y Zi3Z;
& (=70 o

3. ROBUSTNESS ANALYSIS

Now, consider for the multimachine system the
presence of the following uncertain parameters
@ D;
=2 g, = 21
i M. 2 M. ( )

i i

3 . * *
with nominal values 7; ,7,, and parameter errors

iy =M =it s T2 = iz =iz - (22)
Then, it can be shown with an analysis similar to that

given in [1] that for the control law (15) the zi3-
dynamics take the form

Zy=—czn+ fu v, (23)
where
*
. (Cil +¢n — 771'2)

fa=fit——"
i

(ﬁizAwi +’7i1APei) .29

The linear terms with respect to Aw;,AP,; in f; do
not affect our analysis for z; (Theorem 1 of [1]).

This is due to the fact that they only change the values
of the unknown constants ¢&;,&,,&3 as both Aw;

and AP,, can be written as a linear combination of

231, 2j2, 213 - Defining now

71'2 = fil —MnzZiz =
(Cil +¢ = 77;2) 3 3 (25)
fi +—*—(77i2Awi + 1751 AL, ) ~ 1%
i

it can be easily seen from (25) that an analogous
bound for ‘ f (t)l as that given in [1], also exists for

|52 ()

O, Git» é?,'z, 45-3 such that

, 1.e. there exist unknown positive constants

3
()5 + D5 ||, =120 (26)

Now, consider the nonnegative function ¥;

2 2 2
— Z; Z; z
2 2
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its time derivative for |z;3|>/2;/4 is

o 2 2 2
Vi=—cnzj - (Ci2 +1hi )Zi2 — (373

~lnaznzin + 2 [ Fia (£) + i (1) | (28)
+[6:(1)~ 5 )z + il[g‘,.j (0)-& |73
=
where
ligg =T + Lz_n;‘ﬁn ; (29)
i
la =—cnflia + ﬂMﬁn : (30)

A
Therefore from (28), the following inequality results

i <[z Zﬂ]{ G }{Zﬂ}

Liaf2 e +ling | 22

3
- Az +|Zi3’|:|7i2(t)| —0;- Zé?y|zy|] +z;3v (1) (31)
=1

3 A
+|Zi3||rl/1i —cigl|zi3] + 8: (1) + zl‘fy(’)‘zlj’J
J= )

Pi

However, since the third term in the right-hand side of
the above inequality is nonpositive we can write

I7$—[z~ 2] ¢ /2 || za
l BTN 2 et || 2 (32)

— Az +2;3v; (2) + 23]
and substituting v;(¢) from (16) and choosing

¢;1,¢p such that
. I, /2
|: &1 112/ j| >0 : (33)
/2 ¢+l

we result in

Vig—’?‘izz%_—l—ﬁ_'*'lZB'pi
P |Zi3| +1; (34)
=_/1’,Z_23+M
l plei31+lz’
Le. for |z;3]> 2L /4 itis
. 0. |zl + 12 ‘
V<2l +l’p—’|z’-3|+—l'=—2zi L=, (3%

Pi |2i3| +1;

From (35) it is clear that there exists 7; <f,+

V;(ty)/1; , such that for every ¢2T;, it holds true that

ENG <\J2I,/4; . The uniform boundedness of
z; (t),é’i(t),éfy. (1),j=12,3 in the time interval
[10,7_}] becomes obvious from the definition of ;
in (27). From (19)-(20), it can be seen that for ¢> T,
we have 6, (1)=6; (T})(i=1,2,...,n) and
& (1)=6;(5) (=123, i=L2...n).

the estimates &i(t),fij (¢) are uniformly bounded

Hence,

for all r2¢ .

following theorem.

Theorem 1: If the excitation input (15) is applied
on the n-machine system described by equations (1)-
(13), under the parameter uncertainties of (21) and

(22), then, there exists T; >4, such that

s (t)\sf%’f 2T,

and the other two error variables z;(t),z;, () are

Therefore, we have proven the

i=12,...,n

uniformly bounded for fe [tO,Z_}] and the signals
6:(1),&1 (¢), &2 (t), & (¢)are all uniformly bounded
for t=1,.

The dynamics for the z;;,z,, variables are now
given by

{ Zj = Zjp ~ CjZ)) (36)

Zip = =(1+bna )z = (cia + iz ) 202 = M Zis,
. o _ 2 2
So the time derivative of V =zj / 2+ 2z / 2 for

t>T. sequentially is
; 2 2
Vi =—cnzj1 —(Ciz + Zi22)zi2 — 41221122 — MiZi2%i3

2 2 21
<—cyizit ~ (G2 +lia2) 22 — lnzinzia + 10, ’Zl |2i2]

2 2
<—cpzii —[ e (1- &)+l |25 = liaznzin (37)
2 2
~ iz |20 - =T 2\ i
T 2560V A ) 28004

. ) Lin /2 . 2
<[z Ziz]{ N 2/ }{2’1}+———Z’n’1

binf2 cn(1=&)+hn | zin | 26004

Choosing large enough c¢;;,¢;, , the matrix

P ={ ¢ ln2/2 } (38)
Colna/2 en(l-g)+hn
is positive definite so that for some m; >0, itis
P zml (39
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and (37) yields
) 102 Ln2
V;’l < —1711- (lel + Zi22 )+ _lTle_ = _2’%1'I/il + ﬂ—— N
26004 26i¢04;
) L.n2
Vie < =2m;| Vy ——:L . (40)
dm;e;cin Ay

Using the comparison principle [5] we have that

2
V-l(t)— L
4m;€icip
(41
- Imh | om(eT),
|1 () .
[ At At

=\ 2m(-T) i
Va(0)<Va (T )e TR (42)
m;&;Cin A

_ _ vV (T
T, =max<T;,T, +_Lln d ( l) ,  (43)
2 \mgiepy
it holds true that
I.n2
V(1) S == (44)
2mgicin

Thus, we have established the following theorem.

Theorem 2: For a multimachine power system with
parameter uncertainties as given by (21) and (22), the
control law (15) ensures that the error variables
Z;1, 2;» enter in finite-time inside the sphere

2
I
S= (Zil’zi2)|zi21 + 25 3(771'1 _—lzj (45)

mEiCin 4
with the center as the origin and radius

_ I;
RN eat (46)

m;8;Cin Ay
Remark 1: For the power angle deviations we have
the simple bound form

[ .
|As; (¢)| < my Foocals Vt2T;,

which clearly indicates that the bigger ¢;;, ¢;, are,

the smaller the radius 7 is.

4. DISTURBANCE ATTENUATION

Power systems are usually under disturbances such
as sudden load changes or variations in the input
mechanical power, which can be modeled in the wi-

dynamics as an unknown input d; (¢):

R CIORY
(47)
1) 1)
+X/[9;(Pmi —F (f))*'ﬁoidi (’)
Now, for the control law (15) with gains given by (16)
the zi3-dynamics take on the form

3 =—CpZp + fy + Vi, (48)
where
L D,
Sa=fi=|enten——1d;(t). (49)
M;

Defining now

Jir=Fa-

i
~ D; 0)0
=f"( n+Cn ——— ]d'(’)_—zz

] 1 1 1 Ml 1 M

!

(50)

it can be easily seen from (50) that an analogous
bound for } f (t)| as that given in [1] also exists for

|J;i2 (t)
51" 51'1’ 5[2, 51'3 such that

3
li;a (t)‘g&l +Z$l] y4
Jj=l1

Now, consider the nonnegative function 7,

, 1.e. there exist unknown positive constants

i=1,2,...,n. (51)

M\NM
I\),wm

2
1 59
2

0

(52)

[a(t &]2 23:[5,, é,,]

Jj=1 2}/11

then, for the case wherein |z;3|>4/2//4 , the
excitation input is given by eqgs. (15)-(18) and the
update laws are given by (19)-(20), the time derivative
of V,

. 1s as follows

di(t)z;

=6, ||z (53)

2 . % 4
Ci3Ziz +——
i (1)]+ [6
ij ]‘ 7

5 2 2
Vi =—cnzii —cinziz —
+2z; |:ft
3
Z[éj
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which results in the inequality

2,2
2 wyd; L 2
S_Cilzil_(ciz_ 2M2(l )] Ziy +——/1i2i3

BT

ij

5,,- (f)\zijl}'
j=l

[
+za||fia ()] -6 25,] }Z,w (1) (5%

W

-
+zis)| Vi —casllzial + 6: (1) + 2

2

Pi

The fifth term on the right-hand side of inequality (54)
is nonpositive and therefore

wgdiz (t)] 22

2 i2
I8 D)
+EI—2121'3 + 239 () + |23 o1
Substituting v, (¢) from (17) and considering
2
c1 >0, ¢ >wid? (1)[2MA;, (56)
we have
5 _ 2 P}z
V<L dzhy ——B— 25| 0
2 pi|zi3|+li
; - (57)
l; 1P |Zi
2 pilzis|+;
ie. for |z;3|> 24 /4
L Lolzal+2 L I’
2 pi|Zi3|+li 2 2
From (58) it is clear that there exists

T. <t +2V;(tp)/l; such that for every ¢>T7; , it
holds true that ‘zi3(t|<,/21-/~ .
1(6):45(),J

time interval [to,f}] is obvious from the definition

The uniform

boundedness of zij( ),6, i=1,2,3 in the

of ¥, in (52). From (18)-(19), it can be seen that for

6; (T )(i=1,2,...,
& (1) =$,.j(f;) (j=123, i=12,.,n).

the estimates &, (1),

t>T, we have that &;(t) n) and

Hence,

fij (¢t) are uniformly bounded

forall £>1¢.
The dynamics for the z;,z;; variables are now
given by

Zj1 = Zjp — Gz

59
wO l3+ﬁd() ()

i 1

Zip =77 ~CppZip
So the time derivative of ¥ for t>7T, is

@y
Zi2Z;3 +
i i

12d()

- 2 2
Va =—cnzit —CazZip —

1

21,
< _Cilzizl 12212 +— I212|(|d + Zl]

o? 21 ’
_O_Udi (t)‘ + ZIJ

2
o 21

_ C”Zizl — &y Dzﬂl _EO'AT( a (t)| ' _ﬂv—lﬂ '
iy .

(1-g)} we sequentially

< ‘Ciz (1 — gl’ )2122 +

Defining m; = min{cﬂ,ciz

g Y
—4 - [ud I ;f]
£iCio

+m -

have

so that for ¢>7;, where

- - 8m~5‘c~M V; T,
Ty = maxd T, T 4 —In| — 012 1(’2 . (62)

m; 21,
oi(lol. - /% |

it holds true that
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Va(e) <

1

a)2 21 :
— 0 |4 Zi 63
4m£c,2M2(” )+ %J ©3)

i.e. the error variables z;,z;; enter in finite-time
inside the sphere

22
§= {(Zil’ZiZ) lzjj +zi3

2 2 (64)
<L+ 2

2
2mgic M

with the center as the origin and radius

5 @y E{l—
R ._F e {”d |, + J; J (65)

Thus, we have proven the following theorem.
Theorem 3: For the n-machine system with

excitation control given by (15) and unknown

bounded external disturbances d,(¢), all the error

&(1), &),

&4(7) are uniformly bounded, and there exists

variables and the signals &;(r),

T, >t sothatforevery >T} itholds true

|23 (6)| s 20/ 4

2 2 602 i ?
Zn(f)+ziz(’)<W “d ” + Zl

ie.

- 21,
185, (1| < R,y =m‘;g_€lz£ud @, + E]

wherein
242
wyd; (t
(e8] >0, Cin' > 0;2(), C;i3 >0.

Remark 2: From Theorem 3 it is easily seen that
we can attenuate the effect of the disturbances by
choosing large enough gains ¢;;,¢;, correspondingly.

However, a tighter bound on the angle deviations
can be established in a similar way to that used in the
proof of Corollary 1 of [1].

Corollary 1: For the n-machine system with

excitation control voltages given by (15) and bounded
disturbances d;(z), the following tighter (for ¢; >1)

bounds on the angle deviation limits hold

lim JA&' t)‘

[—0

o A
- M c;\J2m;giciy (”dl (t)Hw ’ A ]

wherein the gains are chosen so that

g} (1)

cn >0, ¢ >
2MEL

s O3 >0.

Remark 3: For ¢ =1/2 and
above inequality takes the simple form

\/_(00 21,
[”d ” + 7]. (67A)

M; iGi1Ci2 i

il 2 ¢ /2 the

lim |A5 ’

Inequality (67) implies that the disturbance
attenuation capability of the proposed controller is
directly related to the product of the design constants

G1 and €

Note that for a disturbance with constant steady-
state such as a step change occurring, for example by
the addition or removal of a load, it is easily proven
that

lim Aw; (1) =0,

t—©

i
{—w0

Additionally, since from the previous analysis it has
been shown that

Jim Jzs (0] 7-
and since
. M, .
tll)r?o z3(1) = —w—o’(l + ctlciz)tll)n;‘oAé‘i (1)

Wy t—>0 i

M, D,
-—Llim [cn +¢p —V’JAwi (r)

+ lim AP, (1),

[—>0

we have that

1 A5 <R =——"——||d f—— .
th:o’ |< ! Mi(l+Ci1012){| l’+ &J %)

In accordance to (67) and (68), the bigger the
selection of the values of the product cyc;y is, the
smaller the deviation from the nominal power angle is,
avoiding the risk of losing synchronism. For example,
for a generator with M = 8sec, the choice of ¢, ¢; so
that ¢c, >149 (e.g. ¢ =10 and ¢, =15) and
0, =0.01, 4 =100 will lead to less than 80 variation

for a 50% change of the input power from its nominal
value (1p.u.). The last bound is obviously tighter than

(67) (it holds Ry <Ry<R, since 1/(1+x)<
1/x<\/§/x Vx>0) as it is expected due to the

additional assumption for the constant steady-state
value of the disturbance.
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5. CASE STUDIES

The two generator infinite bus power system used
in [1] is considered to demonstrate the robustness and
disturbance attenuation capability of the system.

The following two cases are simulated.

Case 1: Permanent serious fault with large
parameter uncertainties: A symmetrical three phase
short circuit fault occurs on one of the transmission
lines between Generator #1 and Generator #2. The
fault characteristics are exactly the same as that
referred to in the case study of [1]. However, in this
case major parameter uncertainties are considered for
Generator #1. Particularly, while the actual machine
parameters are M;=4 sec and D; =3 p.u., the

controller is designed with Ml* =8sec and Dl* =5
p.u. The controllers’ parameters are considered to be:

C”=5, C12=15, 0132100, }/1:10,
C2]:5, C22=15, 023:]00, V) 210,
4 =100, 8 =0.0005, 4, =100, &, = 0.001

Case 2: Unknown step increase of the
mechanical power: A step increase of the mechanical
input power of Generator #1 by 0.1p.u. is considered
(a variation of 10% of the nominal value Pml10 =
Ip.u.) at t = 30sec. The controllers’ parameters are the
same as in Case 1. From these controiler parameter
values the variation in the power angle for generator
#1 is calculated through (68) at 3.05 deg.

The simulation results are given in Figs. 1-6 for
Case 1 and in Figs. 7-12 for Case 2. In both cases the
design parameters are selected in accordance to the
theoretical results obtained from the previous analysis.
As expected, the response characteristics are very
satisfactory and the whole system performance
appears to be clearly robust under both parameter
uncertainties and external disturbances.

=71 T 7 — ==
_51
upper bound ||

f
i
I
|

time(sec)

Fig. 1. Power angle response (in deg) for generator #1
(Case 1). : '

i i
i I
2l et Gl st et Rlenlie sttt st Ruiostls et lesdies Rondlos
20 205 21 215 22 225 23 235 24 245 25
time(sec)

Fig. 2. Power angle response (in deg) for generator #2
(Case 1).

! 7‘1__T_—17717777_1J
L il it st Bl sl Mt
e e i Rl et Sl B

lma(sec)

Fig. 3. Rotor speed deviations for machines #1 and #2
respectively (Case 1).

Fig. 4. Excitation voltages for machines #1 and #2
respectively (Case 1).

Fig. 5. Estimated parameters for machines #1 and #2
respectively (Case 1).

Fig. 6. Terminal voltages for machines #1 and #2
respectively (Case 1).
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Fig. 7. Power angle response and calculated bounds
for generator #1 (Case 2).
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Fig. 8. Power angle response and calculated bounds
for generator #2 (Case 2).

Fig. 9. Rotor speed deviations in machines #1 and #2
respectively (Case 2).

Fig. 10. Excitation voltages for generators #1 and #2
respectively (Case 2). '

Fig. 11. Estimated parameters for machines #1 and #2
respectively.(Case 2).
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Fig. 12. Terminal voltages for machines #1 and #2
respectively (Case 2).

6. CONCLUSIONS

An adaptive nonlinear excitation controller as
proposed in [1] is analysed and tested under large
system uncertainties and external disturbances.
Theoretical results are proved that constitute the frame
for the design of such a controller. This frame actually
is a set of simple design rules, associated to the
selection of some parameters that ensure robustness
and disturbance attenuation. All the simulation results
confirm our theoretical outcomes providing a very
satisfactory system performance.
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