• Title/Summary/Keyword: robust state observer

Search Result 149, Processing Time 0.028 seconds

Robust sliding mode control for a USV water-jet system

  • Kim, HyunWoo;Lee, Jangmyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.851-857
    • /
    • 2019
  • A new robust sliding mode control with disturbance and state observers has been proposed to control the nozzle angle of a water-jet system for a Unmanned Surface Vehicle (USV). As the water-jet system of a ship is subjected to direct disturbances owing to the exposure to the marine environment in water, it requires a robust control. A state observer and a disturbance observer are added to the water jet nozzle control system to achieve a robust control against disturbances. To verify the performance of the proposed algorithm, a test bed is constructed by a propulsion system used in the popular USV. This proposed algorithm has been evaluated by comparing to the existing algorithm through experiments. The results show that the performance of the proposed algorithm is better than that of the conventional PID or sliding mode controller when controlling the steering of the USV with disturbances.

Backstepping Control-Based Precise Positioning Control Using Robust Friction State Observer and RFNN (강인한 마찰상태관측기와 RFNN을 이용한 백스테핑 제어기반 정밀 위치제어)

  • Yeo, Dae-Yeon;Han, Seong-Ik;Lee, Kwon-Soon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.394-401
    • /
    • 2010
  • In this article, we investigate a robust friction compensation scheme for the purpose of accomplishing precision positioning performance a servo mechanical system with nonlinear dynamic friction. To estimate the friction state and tackle robustness problem for uncertainty, a RFNN and reconstructed error compensator as well as a robust friction state observer are developed. The asymptotic stability of the series of friction compensation methodologies are verified from the Lyapunov's stability theory. Some simulations and experiments on a servo mechanical system were carried out to evaluate the effectiveness of the proposed control scheme.

A State Observer for MINO Nonlinear Systems (다입력 다출력 비선형 시스템의 상태 관측기 설계)

  • Lee, Sung-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.5
    • /
    • pp.8-12
    • /
    • 2008
  • In this paper, the robust state observer for nonlinear systems with unknown disturbance is proposed. The proposed method has an advantage in that it can reduce the effect of disturbance on estimation error of observer up to a specified level. Therefore, our design a roach can deal with a larger class of uncertain nonlinear system than the existing methods. The sufficient conditions on the existence of robust observer are characterized by well grown linear matrix inequality. Finally, an illustrative example is given to verify the proposed design scheme.

A Quantitative Performance Input for an Input Observer ( I ) - Analysis in Transient State - (입력관측기의 정량적 성능지표 (I) -과도상태 해석-)

  • Jung, Jong-Chul;Lee, Boem-Suk;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2060-2066
    • /
    • 2002
  • The closed-loop state and input observer is a pole-placement type observer and estimates unknown state and input variables simultaneously. Pole-placement type observers may have poor transient performance with respect to ill-conditioning factors such as unknown initial estimates, round-off error, etc. For the robust transient performance, the effects of these ill-conditioning factors must be minimized in designing observers. In this paper, the transient performance of the closed-loop state and input observer is investigated quantitatively by considering the error bounds due to ill-conditioning factors. The performance indices are selected from these error bounds and are related to the observer robustness with respect to the ill -conditioning factors. The closed-loop state and input observer with small performance indices is considered as a well-conditioned observer from the transient perspective.

Robust Observer Design for Multi-Output Systems Using Eigenstructure Assignment (고유구조 지정을 이용한 다중출력 시스템의 강인한 관측기 설계)

  • Huh, Kun-Soo;Nam, Joon-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1621-1628
    • /
    • 2004
  • This paper proposes a design methodology for the robust observer using the eigenstructure assignment in multi-output systems so that the observer is less sensitive to the ill-conditioning factors such as unknown initial estimation error, modeling error and measurement bias in transient and steady-state observer performance. The robustness of the observer can be achieved by selecting the desired eigenvector matrix to have a small condition number that guarantees the small upper bound of the estimation error. So the left singular vectors of the unitary matrix spanned by space of the achievable eigenvectors are selected as a desired eigenvectors. Also, this paper proposes how to select the desired eigenvector based on the measure of observability and designs the observer with small gain. An example of a spindle drive system is simulated to validate the robustness to the ill-conditioning factors in the observer performance.

Robust Adaptive Observer Design for a Class of Nonlinear Systems via an Optimization Method (최적화 기법에 의한 비선형 시스템에서의 강인한 적응 관측기 설계)

  • Jung Jong-Chul;Huh Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1249-1254
    • /
    • 2006
  • Existing adaptive observers may cause the parameter drifts due to disturbances even if state estimation errors remain small. To avoid the drift phenomena in the presence of bounded disturbances, several robust adaptive observers have been introduced addressing bounds in state and parameter estimates. However, it is not easy for these observers to manipulate the size of the bounds with the selection of the observer gain. In order to reduce estimation errors, this paper introduces the (equation omitted) gain minimization problem in the adaptive observer structure, which minimizes the (equation omitted) gain between disturbances and estimation errors. The stability condition of the adaptive observer is reformulated as a linear matrix inequality, and the observer gain is optimally chosen by solving the convex optimization problem. The estimation performance is demonstrated through a numerical example.

The Design of Sliding Mode Controller with Sliding Perturbation Observer for a Robust Control of Stewart Platform Manipulator (스튜어트 플랫폼의 견실제어를 위한 슬라이딩 섭동 관측기를 갖는 슬라이딩 모드 제어기 개발)

  • You, Ki-Sung;Park, Min-Kyu;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.639-648
    • /
    • 2002
  • The stewart platform manipulator is a manipulator that has the closed-loop structure with an upper plate end-effector and a base frame. The stewart platform manipulator has the merit of high working accuracy and high stiffness compared with a serial manipulator. However, this is a complex structure, so controllability of the system is not so good. In this paper, we introduce a new robust motion control algorithm using partial state feedback for a class of nonlinear systems in the presence of modelling uncertainties and external disturbances. The major contribution of this work introduces the development and design of robust observer for the state and the perturbation, which is integrated into a variable structure controller(VSC) structure. The combination of controller/observer improves the control performance, because of the robust routine called sliding mode control with sliding perturbation observer(SMCSPO). Simulation and experiment are performed to apply to the manipulator. And their results show a high accuracy and a good performance.

A Study on Robust Control of DC Servo Motor Using Time Delay Control and Observer/Controller Stabilization (시간지연 제어기법을 이용한 DC서보모터 강인제어 및 관측기/제어기 안정화에 관한 연구)

  • 이정완;장평훈;김승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1029-1040
    • /
    • 1993
  • Recently the Time Delay Control (TDC) method has been proposed as a promising technique in the robust control area, where the plants have nonlinear dynamics with parameter variations and substantial disturbances are present. TDC method, however, requires the measurements of all the state variables, together with their derivatives. This requirement imposes a severe limitation on the applications to most real systems. In order to solve this measurement problem, we proposed an observer design method that can stably reconstruct the state variables and their derivatives. the stability of the overall system has been analyzed and proved. Then, for a simulation study, the controller/observer based on our design method has been applied to a nonlinear plant, the result of which confirmed that the controller/observer performs satisfactorily as predicted, Finally we made experimentations on a DC servo motor that is substantial amount of inertia variations and external disturbances. the results showed that the controller/observer performs quite robustly under those variations and disturbances, and is much less sensitive to sensor noise than the controller using numerical differentiations.

Integration Control of Air-Cell Seat and Semi-active Suspension Using Sliding Perturbation Observer Design (슬라이딩 섭동 관측기를 이용한 에어셀과 반능동 서스펜션의 통합 제어)

  • 유기성;윤정주;이민철;유완석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.159-169
    • /
    • 2004
  • In this study, integration control of air-cell seat and semi-active suspension is proposed to minimize the road-tyre force which can cause uncomfortable feeling to rider. The proposed integration control with sliding perturbation observer is consisted of air-cell seat control which uses the force generated by air-cell and the sky-hook control. The air-cell seat itself has been modeled as a 1 degree of freedom spring-damper system. The actual characteristics of the air-cell have been analyzed through experiments. In this paper, we introduces a new robust motion control algorithm using partial state feedback for a nonlinear system with modelling uncertainties and external disturbances. The major contribution of this work is the development and design of robust observer for the state and the perturbation. The combination skyhook controller and air-cell controller using the observer improves control performance, because of the robust routine called Sliding Observer Design for Integration Control of Air-Cell Seat and Semi-active Suspension. The simulation results show a high accuracy and a good performance.

Robust State Estimation Based on Sliding Mode Observer for Aeroelastic System

  • Jeong In-Joo;Na Sungsoo;Kim Myung-Hyun;Shim Jae-Hong;Oh Byung-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.540-548
    • /
    • 2005
  • This paper concerns the application and demonstration of sliding mode observer for aeroelastic system, which is robust to model uncertainty including mass and stiffness of the system and various disturbances. The performance of a sliding mode observer is compared with that of a conventional Kalman filter to demonstrate robustness and disturbance decoupling characteristics. Aeroelastic instability may occur when an elastic structure is moving even in subcritical flow speed region. Simulation results using sliding mode observer are presented to control aeroelastic response of flapped wing system due to various external excitations as well as model uncertainty and sinusoidal disturbances in subcritical incompressible flow region.