• Title/Summary/Keyword: robust performance.

Search Result 3,675, Processing Time 0.029 seconds

Robust sliding mode control for a USV water-jet system

  • Kim, HyunWoo;Lee, Jangmyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.851-857
    • /
    • 2019
  • A new robust sliding mode control with disturbance and state observers has been proposed to control the nozzle angle of a water-jet system for a Unmanned Surface Vehicle (USV). As the water-jet system of a ship is subjected to direct disturbances owing to the exposure to the marine environment in water, it requires a robust control. A state observer and a disturbance observer are added to the water jet nozzle control system to achieve a robust control against disturbances. To verify the performance of the proposed algorithm, a test bed is constructed by a propulsion system used in the popular USV. This proposed algorithm has been evaluated by comparing to the existing algorithm through experiments. The results show that the performance of the proposed algorithm is better than that of the conventional PID or sliding mode controller when controlling the steering of the USV with disturbances.

Design of an Adaptive Robust Nonlinear Predictive Controller (적응성을 가진 강인한 비선형 예측제어기 설계)

  • Park, Gee--Yong;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.967-972
    • /
    • 2001
  • In this paper, an adaptive robust nonlinear predictive controller is developed for the continuous time nonlinear systems whose control objective is composed of the system output and its desired value. The basic control law is derived from the continuous time prediction model and its feedback dynamcis shows another from if input and output linearization. In order to cope with the parameter uncertainty, robust control is incorporated into the basic control law and the asymptotic convergence of tracking error to a certain bounded region is guaranteed. For stability and performance improvement within the bounded region, an adaptive control is introduced. Simulation tests for the motion control of an underwater wall-ranging robot confirm the performance improvement and the robustness of this controller.

  • PDF

A Study on the Robust Control of Hydraulic Stabilizing System (유압 안정화시스템의 강인제어에 관한 연구)

  • 조택동;서송호;양상민
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.226-233
    • /
    • 1999
  • A transmitting antenna mounted on the naval vessels can be easily exited by exogenous disturbances such as wave and impact. Gimbal system need for the controller to maintain the robust performance against various modeling uncertainties and disturbances. PI controller, however, cannot supply good robust performance under situation. Thus a robust $H_{\infty}$ control scheme is used to ensure a specified dynamic response under above conditions. Gimbal system controlled simplified as 2 DOF system that ignored coordinate co-relations of each direction and hydraulic system is linearly modelled. In this paper, we compared those of simulation to the results of experiment and H$_{\infty}$ controller, proposed, showed the good response and stability than PI controller.

  • PDF

Design of a Robust Controller Using Disturbance Rejection Controller (외란 제거 제어기를 이용한 강인 제어기의 설계)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.137-144
    • /
    • 2006
  • This paper proposes the design of a robust controller based on disturbance observer which is strong to variation of system parameters, uncertainty of models or external disturbance. The controller consists of a mode based compensator and a feedback controller based on two-loop structure. The compensator in the internal-loop removes internal and external disturbances and a feedback controller in the external loop achieves performance along with given specifications. As a result, it shows that the proposed robust controller can stabilize a system against disturbance and improve controlling performance.

  • PDF

Development of a Robust Controller for Piezo/beam Systems (압전/빔 시스템에 대한 강건제어기 개발)

  • 홍성일;박현철;박철휴
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.612-618
    • /
    • 2004
  • This paper presents a robust vibration control methodology for smart structural systems. The governing equation and associated boundary conditions of the smart structural system are derived by using Hamilton's principle. The assumed mode method is used to discretize the governing equation into a set of ordinary differential equation. A robust controller is designed using a linear matrix inequality (LMI) approach for the multiobjective synthesis. The design objectives are to achieve a mix of H$_{\infty}$ performance and H$_2$ performance satisfying constraints on the closed-loop pole locations in the presence of model uncertainties. Numerical examples are presented to demonstrate the effectiveness of LMI approach in damping out the multiple vibration modes of the piezo/beam system.

Robust Servo Design and Application for Optical Disk Drive using Robust Control Theory: QFT vs. H_inf (광 디스크 서보 설계를 위한 강건 제어 이론의 적용 및 평가: QFT vs. $H_{\infty}$)

  • Choi, Jin-Young;Park, Tae-Wook;Yang, Hyun-Seok;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.541-546
    • /
    • 2005
  • In this paper, the various uncertainties, which are generated in working of an optical disk drive, are discussed in details and the robust servo design considering the uncertainties are discussed. First, the classification of the uncertainties and the modeling process including that are treated. Then, the robust servo designs using QFT and $H_{\infty}$ theory are performed. Finally, the designed servo loops realized by DSP are applied to the real system. From these experiments, we proved that the robust servo design using QFT and $H_{\infty}$ have a good performance and a good robust stability when it compared with the conventional servo loop.

  • PDF

A Robust Principal Component Neural Network

  • Changha Hwang;Park, Hyejung;A, Eunyoung-N
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.625-632
    • /
    • 2001
  • Principal component analysis(PCA) is a multivariate technique falling under the general title of factor analysis. The purpose of PCA is to Identify the dependence structure behind a multivariate stochastic observation In order to obtain a compact description of it. In engineering field PCA is utilized mainly (or data compression and restoration. In this paper we propose a new robust Hebbian algorithm for robust PCA. This algorithm is based on a hyperbolic tangent function due to Hampel ef al.(1989) which is known to be robust in Statistics. We do two experiments to investigate the performance of the new robust Hebbian learning algorithm for robust PCA.

  • PDF

Web Lateral Control of Cold Rolling Mill Systems Using a Robust PID Control (강인 PID 제어를 이용한 냉간압연 시스템의 웹 횡방향 제어)

  • Park, Chintac;Kim, In-Soo;Lee, Young-Jin;Kim, Jong-Shik;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.373-384
    • /
    • 2002
  • This paper presents a robust PID controller design technique using the concept of model matching method in the frequency domain. To design the robust PID controller satisfying disturbance attenuation and robust tracking property for a reference input, first an H$\infty$ controller satisfying given performance is designed using the H$\infty$ control method. And then, the parameters(proportional, integral, and derivative gains) of the robust PID controller are determined using the model matching at frequency domain. The proposed technique is applied to a position controller design of the web. The simulation results show that the proposed robust PID controller satisfies disturbance attenuation and tracking property.

A Robust Recursive Control Approach to Nonlinear Missile Autopilot (강인 반복 제어를 이용한 비선영 유도탄 자동조종장치)

  • Nam, Heon-Seong;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1031-1035
    • /
    • 2001
  • In this paper, a robust recursive control approach for nonlinear system, which is based on Lyapunov stability, is proposed. The proposed method can apply to extended systems including cascaded systems and the stability is guaranteed in the sense of Lyapunov. The recursive design procedure so called “robust recursive control approach” is used to find a stabilizing robust controller and simultaneously estimate the uncertainty parameters. First, a nonlinear model with uncertainties whose bounds are unknown is derived. Then, unknown bounds of uncertainties are estimated. By using these estimates, the stabilizing robust controller is updated at each step. This approach is applied to the pitch autopilot design of a nonlinear missile system and simulation results indicate good performance.

  • PDF

An acoustic echo canceler robust to noisy environment (잡음환경에 강건한 음향반향제거기)

  • 박장식;손경식
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.623-626
    • /
    • 1998
  • NLMS algorithm is degraded by the ambient noises and the near-end speech signals. In this paper, a robust acoustic echo cancellation algorithm is proposed. To enhance the echo cancellation performance, the step size of the proposed algorithm is normalized by the sum o fthe power of the reference signals and the primary signals. as results of comparing the excess mean square errors, it is shown that the proosed algorithm can enhance the performance of cancelling the echo signals. Some experiments, which is used multimedia personal computer, are carried out. As results of experiments, the proposed algorithm shows better performance than conventional ones.

  • PDF