• Title/Summary/Keyword: robust output tracking

Search Result 89, Processing Time 0.028 seconds

Inversion-Based Robust Output Tracking of Differentially Flat Nonlinear Systems

  • Joo, Jin-Man;Park, in-Bae;Park, Yoon-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • In this study, we propose a two degree of freedom robust output tracking control method for a class of nonlinear system. We consider hyperbolically nonminimum phase single-input single-output uncertain nonlinear systems. We also consider the case that the nominal input-state equation is differentially flat. Nominal stable state trajectory is obtained in the flat output space via the flat output. Nominal feedforward control input is also computed from the nominal state trajectory. Due to the nature of the method, the generated flat output trajectory and control input are noncausal. Robust feedback control is designed to stabilize the systems around the nominal trajectory. A numerical example is given is given to demonstrate that robust tracking is achieved.

  • PDF

Robust Output-Tracking Control of Uncertain Takagi-Sugeno Fuzzy Systems

  • 이호재;박진배;정근호;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.315-318
    • /
    • 2003
  • A systematic output-tracking control design technique for robust control of Takagi-Sugeno (T-S) fuzzy systems with norm-bounded uncertainties is developed. The uncertain T-S fuzzy system is first represented as a set of uncertain local linear systems. The tracking problem is then converted into the stabilization problem for a set of uncertain local linear systems thereby leading to a more feasible controller design procedure. A sufficient condition for robust asymptotic output tracking is derived in terms of a set of linear matrix inequalities (LMIs). A stability condition on the traversing time-instances is also established. The output tracking control simulation for a flexible-joint robot-arm model is demonstrated, to convincingly show the effectiveness of the proposed system modeling and controller design method.

  • PDF

Adaptive Robust Output Tracking for Nonlinear MMO Systems

  • Im, Kyu-Mann
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.177-182
    • /
    • 2003
  • The robust output tracking control problem of general nonlinear MIMO systems is discussed. The robustness against parameter uncertainties is considered. In this paper, we proposed the robust output tracking control scheme for a class of MIMO nonlinear dynamical systems using output feedback linearization method. The presented control scheme is based on the VSS. We assume that the nonlinear dynamical system is minimum phase, the relative degree of the system is r$_{1}$+r$_{2}$+…r$_{m}$$\leq$ n and zero dynamics is stable. It is shown that the outputs of the closed-loop system asymptotically track given output trajectories despite the uncertainties while maintaining the boundedness of all signals inside the loop. And we verified that the proposed control scheme is then applied to the control of a two degree of freedom (DOF) robotic manipulator with payload.d.

  • PDF

Adaptive Actuator Failure Compensation Designs for Linear Systems

  • Chen, Shuhao;Tao, Gang;Joshi, Suresh M.
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • This paper surveys some existing direct adaptive feedback control schemes for linear time-invariant systems with actuator failures characterized by the failure pattern that some inputs are stuck at some unknown fixed or varying values at unknown time instants, and applications of those schemes to aircraft flight control system models. Controller structures, plant-model matching conditions, and adaptive laws to update controller parameters are investigated for the following cases for continuous-time systems: state tracking using state feed-back, output tracking using state feedback, and output tracking using output feedback. In addition, a discrete-time output tracking design using output feedback is presented. Robustness of this design with respect to unmodeled dynamics and disturbances is addressed using a modified robust adaptive law.

Robust Switching-Type Fuzzy-Model-Based Output Tracker

  • Lee, Ho-Jae;Park, Jin-Bae;Joo, Young-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.411-418
    • /
    • 2005
  • This paper discusses an output-tracking control design method for Takagi-Sugeno fuzzy systems with parametric uncertainties. We first represent the concerned system as a set of uncertain linear systems. The tracking problem is then converted into a stabilization problem thereby leading to a more feasible control design procedure. A sufficient condition for robust practical output tracking is derived in terms of a set of linear matrix inequalities. A numerical example for a flexible-joint robot-arm model has been demonstrated, to convincingly show effectiveness of the proposed system modeling and control design.

Robust Tracking Control of a Ball and Beam System using Optimal Bang-Bang Input (최적의 Bang-Bang 입력을 이용한 볼-빔 시스템의 강인한 추적 제어)

  • Lee, Kyung-Tae;Choi, Ho-Lim
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.110-120
    • /
    • 2018
  • In this paper, we apply the input-output linearization technique to tracking the follow-up trajectory r(t) in the ball-beam system. There exist system disturbance and various uncertainties, the conventional input-output linearization based control yields some noticeable errors in tracking performance. As a result, a new robust control technique for the uncertainty of the system was proposed and its improved performance verified through simulation and experimental results. So, more realistic system model is obtained with unmatched uncertainties and disturbance. Then, in order to improve the control performance, a new optimal bang-bang control input is additionally added.

Fuzzy Output-Tracking Control for Uncertain Nonlinear Systems (불확실 비선형 시스템을 위한 퍼지 출력 추종 제어)

  • Lee, Ho-Jae;Joom, Young-Hoo;Park, Jin-Ba
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.185-190
    • /
    • 2005
  • A systematic output tracking control design technique for robust control of Takagi-Sugeno (T-S) fuzzy systems with norm bounded uncertainties is developed. The uncertain T-S fuzzy system is first represented as a set of uncertain local linear systems. The tracking problem is then converted into the stabilization problem for a set of uncertain local linear systems thereby leading to a more feasible controller design procedure. A sufficient condition for robust asymptotic output tracking is derived in terms of a set of linear matrix inequalities. A stability condition on the traversing time instances is also established. The output tracking control simulation for a flexible-joint robot-arm model is demonstrated, to convincingly show the effectiveness of the proposed system modeling and controller design.

Robust sliding mode control of nonlinear uncertain system via geometric approach (기하학적 접근에 의한 비선형 불확실성 시스템에 대한 강건한 슬라이딩 모드 제어)

  • 박동원;김우철;김정식;최승복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1213-1218
    • /
    • 1993
  • Variable structure control is applied to the robust output tracking control problem of general nonlinear multi-input multi-output (MIMO) systems. Using the concept of relative degree and minimum phase, input/output(I/O) linearization is undertaken. For I/O the linearized system, a new sliding hyperplanes design method is proposed. In this procedure, we can construct very robust and efficient sliding mode controller for general nonlinear systems of relative degree higher than two. The control results are illustrated by adopting a numerical example.

  • PDF

Construction of a robust tracking system with N-th sampling delay

  • Inooka, Hikaru;Ichirou, Komatsu Ken
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.87.5-87
    • /
    • 2001
  • In the past, we presented the tracking system with one sampling delay. In this paper, first we propose a tracking system with N-th sampling delay, in the case where an input-output pulse transfer function of a plant Z$\_$-N/. Secondly we propose a system configuration converting an input-output pulse transfer function of a plant into Z$\_$-N/ with the inverse system of the plant. Moreover, the proposed tracking system configuration is applied to an actual Ball and Beam system and good results are obtained.

  • PDF

Model Following Control of Linear Time-Invariant System with Uncertain Time Delay (불확실성 지연시간 시스템의 모델추종제어)

  • Kim, Hye-Kyung;Kim, Young Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.786-796
    • /
    • 2014
  • This paper presents a new approach to design a robust tracking controller for linear time-invariant systems with uncertain time-delay. By introducing the model following control (MFC) structure which consists of two loops in nature, we show that the controller is capable of having a predictive control action and effectively tracking the reference output with a desired transient response as well. Three design techniques to achieve good tracking performance are suggested. It is also analytically shown that the tracking performance of the proposed scheme is more robust than that of typical single-loop feedback structure. An illustrative example is given to compare the tracking performances of the proposed methods with a single loop method.