Transactions on Control, Automation and Systems Engineering Vol. 3, No. 1, March, 2001 21

Inversion-Based Robust Output Tracking of Differentially Flat

Nonlinear Systems

Jin Man Joo, Jin Bae Park, and Yoon Ho Choi

Abstract: In this study, we propose a two degree of freedom robust output tracking control method for a class of nonlinear systems. We
consider hyperbolically nonminimum phase single-input single-output uncertain nonlinear systems. We also consider the case that the
nominal input-state equation is differentially flat. Nominal stable state trajectory is obtained in the flat output space via the flat output.
Nominal feedforward control input is also computed from the nominal state trajectory. Due to the nature of the method, the generated
flat output trajectory and control input are noncausal. Robust feedback control is designed to stabilize the system around the nominal

trajectory. A numerical example is given to demonstrate that robust output tracking is achieved.
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L. Introduction

Tracking control and regulation are common problems in ap-
plications and have attracted considerable attention from con-
trol researchers. Several important results have been obtained
for output tracking. Asymptotic tracking problem has been
solved when the system is minimum phase [5] by many authors
and approximate tracking has also been solved when the sys-
tem is nonminimum phase [2][4]. Recently in [1] a noncausal
inversion-based approach to exact nonlinear output tracking
control for systems with hyperbolic zero dynamics has been
proposed. The method of noncausal inversion tries to find a
stable solution for the full state trajectory by steering from the
unstable zero dynamics manifold to the stable zero dynamics
manifold. The solution is found by repeatedly solving a two
point boundary value problem for the linearized zero dynam-
ics driven by the desired trajectory. In this paper we adopt the
approach in [1} and further develop the method for a class of
nonlinear systems. We consider hyperbolically nonminimum
phase input-output systems whose input-state systems are dif-
ferentially flat.

Differentially flat systems are underdetermined systems
of (nonlinear) ordinary differential equations whose solution
curves are in smooth one-to-one correspondence with arbitrary
curves in a space whose dimension equals the number of equa-
tions by which the system is underdetermined [3][{9]. The com-
ponents of the map from the system space to the smaller dimen-
sional space are referred to as the flat outputs. Typically the flat
outputs may depend on the original independent and dependent
variables in terms of which the ordinary differential equations
are written as well as finitely many derivatives of the dependent
variables [3]. For single-input systems, single flat output exists
and can be written as a function of states only. In addition, feed-
back linearizability implies differential flatness for single-input
systems [11]. However, the flat output has useful geometric
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properties for both trajectory generation and feedback stabiliza-
tion.

For the problem of generation of the stable trajectory, as men-
tioned above, flat output has an one-to-one correspondence with
the states and hence, finding noncausal stable solution of the in-
ternal dynamics can be completely formulated in terms of the
flat output. This formulation has an computational advantage
that the resulting nonlinear ordinary differential equation con-
sists of a single variable with specified inputs and then can be
treated more easily. We only need to solve one ordinary differ-
ential equation by Picard-like iteration.

For the feedback stabilization problem, the flat output and its
derivatives serves as nominal coordinate transformation func-
tions. While it is possible to confirm or exclude the existence
of feedback linearizing control laws by testing some proper-
ties of the vector fields, unfortunately, there is no general sys-
tematic approach to construct analytically the local diffeomor-
phism, hence the feedback linearizing control. In practice, it is
customary to approach the probiem by trial and error, using the
notion of relative degree, i.e., finding the output function having
relative degree equals the dimension of the system. However,
the flat output can perfectly serve as the given output function
for the input-state linearization problem. With this approach,
we linearize the uncertain system around the nominal desired
flat output trajectory into linear error dynamics with uncertainty.
Based on this linear error dynamics, robust feedback control is
designed.

For obvious reasons, the approach of this paper can be re-
garded as the two degree of freedom design: the generation of
stable flat output trajectory and design of robust feedback stabi-
lizing control.

I1. Absolute equivalence and differential flainess

In this section we shall introduce the notions of Pfaffian sys-
tems, Cartan prolongations and absolute equivalence and pro-
vide a definition of differential flatness in terms of absolute
equivalence. We assume that all manifolds and mappings are
smooth (C°°) unless explicitly stated otherwise.

Definition 1: A Pfaffian system / on a manifold M is a sub-
module of the module of differential one-forms Q1(M) over
the commutative ring of smooth functions C*(M). A set
of one-forms w?,...,w™, generates a Pfaffian system I =
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(W' w0y = {X few* | fie € C®(M)).

We restrict our attention to finitely generated Pfaffian systems
on finite dimensional manifolds. We treat dt as an independence
condition, i.e., a one-form that is not allowed to vanish on any
of the solution curves. For p € M, the codimension at p of the
system is dim M — dim I(p). A system is trivial if I = {0}.

In local coordinates, control systems can be written in the
form:

I ={dz:i — fi(z,u,t)dt,...,dzn — fo(z,u,t)dt}

with states {z1,...,Z.} and control inputs {u1,...,up}.
Definition 2: Let (I, dt) be a Pfaffian system on a manifold
M. The derived systems of I are I©) = I and, for each k > 0,

1% = £, e I | dw =0 mod IM}.

If we consider the equivalence between two systems, we usu-
ally try to find nonsingular transformations associated with two
systems. However, we may consider the equivalence in the
sense of a solution curve. Then one can say that two systems
are equivalent if they have the same solution curve regardless of
the dimension of each system. We introduce the Cartan prolon-
gation and absolute equivalence which give rise to a more gen-
eral notion of equivalence between systems that live in spaces
of possibly different dimensions.

Definition 3: [Cartan Prolongation [10}{91}: Let (I,dt) be a
Pfaffian system on a manifold M. Let B be a manifold such that
7w : B — M is a fiber bundle. A Pfaffian system (J, w*dt) on
B is a Cartan prolongation of the system (I, dt) if the following
conditions hold:

L o) J

2. For every integral curve of I, ¢ : (—e,e) — M, there
is a unique lifted integral curve of J, ¢ : (—¢,€e) — B with
moc =c.

Definition 4: [Absolute Equivalence [10]] Two systems Iy
and I, are called absolutely equivalent if they have Cartan pro-
longations Ji and J respectively, that are equivalent in the
usual sense, i.e., there exists a diffeomorphism ¢ such that
¢ (J2) = J1.

Theorem 1: [[101] A system (I,dt) on M is differentially
flat if and only if it is absolutely equivalent to the trivial system
I; = ({0}, dt) on a manifold N.

If (t,y1,...,yp) are local coordinates on N then (y1,...,¥p)
are a set of flat outputs. Observe that the number of flat outputs
is p where p + 1 is the codimension of system (I,dt) on M.
If the system is a control system then p is also the number of
inputs. The absolute equivalence problem has been completely
solved by Elie Cartan for codimension 2 systems. All Cartan
prolongations are locally equivalent to total prolongations [10].
Starting with any system, taking derived systems enables one
to “strip off” prolongations and reach the “core” system, which
is not a total prolongation of any system. For differentially flat
systems, the core is trivial.

1. Flatness for single input systems

For single input control systems, the corresponding differen-
tial system has codimension 2. There are a number of results
available in codimension 2 systems which allow us to give a
complete characterization of differentially flat single-input con-
trol systems [7}[9]-[11]. In codimension 2, every Cartan prolon-

gation is a total prolongation around every point of the fibered
manifold [10]. This allows the following.
Theorem 2: [[9]] Let I be a time invariant control system:

I ={dz, ~ fi(z,u)dt,...,dz, — folz,uw)dt},

where u is a scalar control, i.e., the system has codimension
2. If I is differentially flat around an equilibrium point, then [
is feedback linearizable by static feedback at that equilibrium
point.

Theorem 3: [[9]] If a time invariant single input system is
differentially flat we can always take the flat output as a function
of the states only: 25 = p(z).

Theorem 4: [[10]] A system (I,dt) of constant codimen-
sion 2 is differentially flat if and only if

I dimI® = dim 7% —1,fori = 0,...,n = dim[.
This implies 7™ = {0}

2. The system I + {dt} is integrable foreach¢ = 0,...,n
These results can only be applied to codimension 2 systems.
The characterization of flatness in systems of codimension
higher than 2 remains open problem.

I1IL. The stable inversion problem
1. [nversion-Based output tracking scheme
Here we describe how the inversion approach is used to de-
velop output tracking controller. Consider an SISO system de-
scribed by

&(t) = f(=(t),0) + g(z(t))u(t)
y(t) = h(z(t)) (1)

where f(-) and g(-) are C* vector fields defined on a dense
submanifold X C", u is a scalar control input, h(-) is a C*°
function, and y is a scalar output. 8 is an unknown parameter
vector. It is assumed that f is a smooth vector field for every
8 € B !, where B is a compact set. The nominal parameter
vector 8" is assumed to be known and the perturbation about 8™
are represented as § = 8™ + 6. And assume that the uncertain
parameter vector § appears linearly in (1). Then the vector field
f can be written

F(2(2),6) = f(z(t) + Af(2(t).

The nominal system can be written as

£(t) = f(x(t)) + gz (t))u(t)
y(t) = h(z(t). @

Let yq4(-) be the desired output trajectory to be tracked. In
the noncausal inversion-based approach we first find a bounded
nominal input-state trajectory [uq(-),z4(-)] that satisfies the
system (2) and yields the desired output exactly, i.e.,

&a(t) = fza(t)) + g(zal(t))ua(t)
ya(t) = h(za(t)),  Vt € (—00,00). 3

Secondly, we use the exact output yielding input trajectory
u4(+) as feedforward and the system is stabilized by using feed-
back.
2. The internal dynamics

In this subsection, it is shown that finding the inverse input-
state trajectory is equivalent to finding bounded solutions to the
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system’s internal dynamics. Assume that the system (2) has
a well-defined relative degree r. The well-defined relative de-
gree assumption enables the system equations to be rewritten,
through a coordinate transformation [8]

z(t) = T((t),n(t)) “

in the following form:

&i(t) = &(t)

& (t) = a(&(t), (1)) + BE®), n(t))u(t) (5)
n(t) = s(&(t),n(t))
y(t) = &i(t).

Note that the desired £(-) is known when the desired output tra-
jectory y4(-) and its time derivatives are specified. The desired
&(-) is defined as £4(-). If the output tracking is achieved then
the control law for maintaining exact tracking can be written
from (5) as

ua(t) = [BEa(®), )] [€ult) — alea®),n®)]  ©
which results in state equations of the form

y () = €u(t)
7(t) = s(€a(t),n(t)). M

This is the inverse system and (7) is referred to as the internal
dynamics. Solving the internal dynamics is a key to finding the
inverse input and state trajectories. If a bounded solution, 74 (-),
to the internal dynamics (7) can be found, then the feedforward
input can be found through (6) as

wa(t) = [BEa(t), na@)] ™" [éu(®) - aléa(®),ma(t)] ®
and the reference state trajectory can be found as

za(t) = T(€a(t), na(t)). )

IV. Robust tracking controller design

1. Computation of the inverse

Standard inversion scheme that integrate (forward in time)
the internal dynamics (7) lead to unbounded solutions if the ori-
gin of the internal dynamics is unstable (nonminimum phase
systems). Noncausal inversion leads to bounded but noncausal
solution of the internal dynamics. In this subsection we describe
how noncausal inversion can be simplified if the system is dif-
ferentially flat. We first briefly describe the approach in [1].
Consider the system (7) which describes the internal dynamics:

1(t) = s(€a(t),n(t)). (10)

If we linearize (10), we can rewrite the equation in the following
form.

n(t) = An(t) + o(n(t), £a(t)), an
where A represents the (hyperbolic) linearization of the dynam-
ics, and ¢(-,-) is the residual error in the linearization. We as-
sume that ¢(0,0) = 0 and ¢(-, -) satisfies the Lipschitz condi-
tion

ll¢(z, ) — ¢y, v)ll < Kille —yll + Kalluw — ol (12)

Devasia-Chen-Paden [1] solve for the “steady state” response of
the system (11) on (~o00, 00), given £4(¢) : —00 < t < 00. We
assume that the variables 7 have been partitioned into 7, and 72
such that

A= (4, Az)
with the eigenvalues of A; in C_ (complex open left half plane)

and those of A, in C4 (complex open right half plane). Then
we can rewrite (11) as:

m(t) = A (t) + ¢1(n(t), €a(t))
N2(t) = A2ma(t) + ¢2(n(t), La(t))-

Define the state transition function of 4 on (—o0, c0) as
(1) = (e"'1(r), —e21(-1)), (13)

where 1(¢) represents the unit step function. By using the vari-
ation of constants formula [6], we have

m(t) = / MO ((r) Ea(T)dr (14)

m(t) = / AT g ((r), Ea(rdr. (1)

It may be verified that a bounded solution to (11) on (—o00, c0)
must satisfy the integral equation

0= [ se-nsmm). Lo a6
Denoting by A the integral operator given by

Nn())(U) = / " ®(U — D(n(r). ()T

If the L1 norm of ® is M, then
IV () — N (o £ MEoo|I§ = tlloo-

The same estimate holds for the L; norm of N(§) — N (}) as
well. Thus, when M K; < 1, the map A/ is a contraction map,
and the solution to (16) exists, is unique, and may be found by
the Picard-Lindelof iteration scheme

Mnt1() = N(m (). (17

The fixed point of the map A is the so-called “steady state
response” of the system (11). For detailed assumptions and
proofs, refer to [1].

Now we describe how the above procedure can be simplified
by utilizing the flat output. Note that the flat output can sum
up the whole dynamic behavior of the system. In other words,
the flat output has a one-to-one correspondence with the system
state. Therefore, if we compute bounded desired flat output tra-
jectory from the desired output profile directly, we can compute
the full state trajectory and the feedforward control input by al-
gebraic mapping. By Theorem 3, we can obtain the flat output
of the nominal system:

25 (t) = p(z(t)). (18)

And from the definition of the flat output, the system states can
be written as a function of the flat output and its derivatives, i.e.,
there exists a surjective submersion () such that,

2(t) = p(zr (), 2(B),.., 2@, (19)
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for some integer m. The upper bound for the integer m ex-
ists, for details refer to [12]. Consider only the purely unstable
partition of the internal dynamics, i.e., 72(-):

2(t) = Aama(8) + da(n(t), La(t)). (20)

By the relationship (4) and (19), equation (20) can be rewritten
as the following form:

¢(t) = v(¢(), €a(®)) (1)

where ((t) = [z7(t), 27 (f), ... ,zﬁm)(t)]T. And it is a set of
ordinary differential equations consist of a single variable z¢(¢)
with £4(-) input. Then, by the equation (15), we can compute
the bounded solution of the flat output rather than compute all
the bounded solution of the internal dynamics. Once the solu-
tion {(t) is found, we can easily compute the nominal stable but
noncausal state trajectory zq(t) by (19). The nominal feedfor-
ward control input is calculated by (8) and it is also noncausal.
This approach has a computational advantage, since we only
need to consider the unstable partition of the internal dynamics.
We solve a set of differential equations in the single variable
backward in time.
2. Feedback control design

The next task is to design feedback control to stabilize the un-
certain system (1) around the nominal state trajectory. However,
we shall linearize the uncertain system around the nominal flat
output trajectory rather than around the output variable. Hence,
the tracking error dynamics is obtained from the error between
nominal flat output trajectory and real flat output trajectory. We
shall now illustrate how to construct coordinate transformation
functions and design robust stabilizing feedback control utiliz-
ing the flat output. From here, we drop the argument ¢ for no-
tational ease. We assume that the uncertain vector field A f(x)
satisfies matching condition, i.e.: The vector field A f(z) sat-
isfies

Af(2) € {dp(), dLsp(a), .., dL} *u(@)}. @)

Define a new state as
z1 = z5 = plz). (23)

Based on this coordinate, we can define coordinate transforma-
tion functions as

2] = Zf
z2 = Lyp(z)
z3 = Lp(x) Q4)

-1
2 = L} p(x).
In the new coordinates, we have

zZ1 =22

22 = 23

zn = Lip(z) + LgL}‘“lu(m)uf + LAfL}L‘I/L(:L'). 25)

Here, we abuse a notation uy to discriminate feedback control
input u; from the feedforward control input u4. Next, we define

erTor e; = z; — zf(j Y. Here, zz represents the desired flat

output trajectory. Then the error dynamics can be represented:

é1=62

éz‘—‘ea

én = Liu(z) + Ly} p(@)us + LasLy  p(e) — 2.

(26)

For the system (26), one can calculate the robust stabilizing
feedback control by solving the following equation in terms of
ufs:

Liu(@) + LoL} ' p(@yup — 250 =Y kiei+v @27
i=1

where k;’s are constant coefficients such that the associated
polynomial s™ —k,s" "' —...—k; is Hurwitz and v is a control
variable to compensate the uncertainty La fL?_l u(z). By the
control input in (26), we can write error dynamics as:

é = (A+ BK)e+ Bu+ BLagL} 'ii(z)  (28)

where the pair (A, B) is in Brunovsky canonical form and
K = [k1,..., k] is a feedback gain vector. Define a bounding
function for the uncertainty in (28)

p(z) > [|ILas L} u(@)ll. (29)

If we design v such that
(30)

where P is the unique symmetric positive definite solution to
the Lyapunov equation

P(A+BK)+ (A+BK)"P=-Q (31)

with @ a given symmetric positive definite matrix. Then the er-
ror dynamics of (28) is exponentially stable with the Lyapunov
function

V(e) =e” Pe.

The overall control design completes if we let
U= Ug + ug. (32)

Figure 1 represents the overall two degree of freedom design
approach.

V. An illustrative example
To demonstrate the approach, consider the following SISO

uncertain nonlinear system

Ly = —0:1:% + 29 +u
Lo =21+ z2 (33)

y=a1
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Uncertainty
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Desired Output | ¥|  Trajectory ud u te
Trajectory Generator + System
+
v
Robust Feedback
= Controller z
e
- +
A

Fig. 1. Block diagram of the two degree of freedom design.

where 6 is an uncertain parameter. We can see that the un-
certainty satisfies Assumption. To check whether the nominal
input-state system is flat, we shall calculate the derived systems.
The Pfaffian system of the nominal input-state system of (33) is
as follows:

I= {wl,UJz}
= {dx, + 0"z dt — 2x2dt — udt, dvs — z1dt — T2dt}.

From the definition of the derived systems, we have to check all
the span of one-forms in I whether the condition holds. Let us
choose w2, then the exterior differentiation of ws is given:

dws = —dx1 A dt — dzo A dt.

We can easily find out that dws = 0 mod I. Then we obtain
the first derived system as follows:

W= {dzs — z1dt — zadt}.

Taking derived systems only involves exterior differentiation
and linear algebra. Finally, the second derived system is the
following:

1? = {o}.

Calculations also show that the system I 4 {dt} is integrable
for each ¢ = 0,1,2. By Theorem 4 the nominal input-state
system is differentially flat. The first derived system 1) indi-
cates that the flat output is given as z; = z2. We let desired
output yg = sin(t). And it can be easily seen that the internal
dynamics of the system can be written

Zf =25 + yq. (34)

We can find noncausal stable solution zg of (34) by (15). Then
nominal feedforward control input is calculated as

g = ga + 07y3 — 22p.

And following the procedure explained in the previous section,
we can design a robust stabilizing feedback control. Figure 2
represents the desired flat output trajectory and nominal feedfor-
ward control input. Noncausal nature of the method is clearly
illustrated. We truncate the negative-time part to —5 seconds.
Figure 3 depicts robust output tracking performance and overall
control input. In Figure 3, we considered 30% uncertainty level
of the parameters. Finally, Figure 4 shows output tracking error.

VL Conclusions
In this study, we have presented a two degree of freedom ro-

bust output tracking control of a class of uncertain nonlinear

-1 s " L

E)
time (sec)

L

-5 ) 5 10 15
time (sec)

Fig. 2. Desired flat output and feedforward control input.
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Fig. 3. Actual output (solid) and overall control input.
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Fig. 4. Tracking error.

systems. Differentially flatness of the input-state system has
been shown to be a useful property for the design of robust
tracking controller. The flat output of the nominal input-state
system has not only been utilized for the generation of bounded
solution of the hyperbolically unstable internal dynamics but
also for the design of robust feedback stabilizing control. Non-
causal inversion problem was formulated in terms of the flat out-
put and its derivatives by considering unstable partition of the
internal dynamics. Nominal feedforward control input followed
the noncausal solution of the internal dynamics. For robust sta-
bilization problem, the flat output and its derivatives have shown
to serve as the nominal coordinate transformation functions and
we have designed robust feedback control based on the result-
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ing linear error dynamics. Differential flatness has shown to
be a useful geometrical property for the two degree of freedom
design approach.
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