• 제목/요약/키워드: robust optimization problem

검색결과 252건 처리시간 0.031초

자동미분을 이용한 민감도기반 분리시스템동시최적화기법의 개선 (Improvement of Sensitivity Based Concurrent Subspace Optimization Using Automatic Differentiation)

  • 박창규;이종수
    • 대한기계학회논문집A
    • /
    • 제25권2호
    • /
    • pp.182-191
    • /
    • 2001
  • The paper describes the improvement on concurrent subspace optimization(CSSO) via automatic differentiation. CSSO is an efficient strategy to coupled multidisciplinary design optimization(MDO), wherein the original design problem is non-hierarchically decomposed into a set of smaller, more tractable subspaces. Key elements in CSSO are consisted of global sensitivity equation, subspace optimization, optimum sensitivity analysis, and coordination optimization problem that require frequent use of 1st order derivatives to obtain design sensitivity information. The current version of CSSO adopts automatic differentiation scheme to provide a robust sensitivity solution. Automatic differentiation has numerical effectiveness over finite difference schemes tat require the perturbed finite step size in design variable. ADIFOR(Automatic Differentiation In FORtran) is employed to evaluate sensitivities in the present work. The use of exact function derivatives facilitates to enhance the numerical accuracy during the iterative design process. The paper discusses how much the automatic differentiation based approach contributes design performance, compared with traditional all-in-one(non-decomposed) and finite difference based approaches.

개선된 다구찌 기법을 이용한 BLDC 전동기의 코깅 토크 저감을 위한 강건 최적설계 (Robust Design Optimization for Reducing Cogging Torque of a BLDC Motor through an Enhanced Taguchi Method)

  • 이창욱;김동욱;김동훈
    • 한국자기학회지
    • /
    • 제24권5호
    • /
    • pp.160-164
    • /
    • 2014
  • 본 논문에서는 설계변수의 불확실성을 고려한 BLDC 전동기의 코깅 토크 저감 설계를 수행하기 위하여 개선된 다구찌법을 이용한 효율적인 강건 최적설계 기법을 제안하였다. 일반적인 강건 최적설계 문제를 처리할 때 발생하는 기존 다구찌법의 단점을 해결하기 위하여, 벌칙함수와 최적수준 탐색기법이 새로이 도입되었다. 제안된 설계기법의 타당성을 검증하기 위하여 5 kW, 정격속도 2,300 rpm, 정격 토크 20 Nm의 전기자동차 구동용 BLDC 전동기의 코깅 토크 저감을 위한 강건 설계가 수행되었다. 또한 도출된 설계결과를 코깅 토크, 정격 토크 및 토크 리플에 대해 개념설계와 결정론적 최적설계 된 전동기들의 결과와 비교하였다.

유전알고리듬을 이용한 비균일 하중을 받는 구조물의 지지위치 최적화 연구 (A Study on the Supporting Location Optimization a Structure Under Non-Uniform Load Using Genetic Algorithm)

  • 이영신;박주식;김근홍
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1558-1565
    • /
    • 2004
  • It is important to determine supporting locations for structural stability when a structure is loaded with non-uniform load or supporting locations as well as the number of the supporting structures are restricted by the problem of space. Moreover, the supporting location optimization of complex structure in real world is frequently faced with discontinuous design space. Therefore, the traditional optimization methods based on derivative are not suitable Whereas, Genetic Algorithm (CA) based on stochastic search technique is a very robust and general method. The KSTAR in-vessel control coil installed in vacuum vessel is loaded with non- uniform electro-magnetic load and supporting locations are restricted by the problem of space. This paper shows the supporting location optimization for structural stability of the in-vessel control coil. Optimization has been performed by means of a developed program. It consists of a Finite Element Analysis interfaced with a Genetic Algorithm. In addition, this paper presents an algorithm to find an optimum solution in discontinuous space using continuous design variables.

냉간압연 공정에의 편심제어 (Roll Wccentricity Control for Cold Strip Rolling Processes)

  • 백기남;류석환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.243-247
    • /
    • 1991
  • A roll eccentricity controller for a tandem cold rolling process is designed to attenuate the outlet thickness deviation due to roll eccentricity. In order to design the controller, the excess stability margin is maximized by solving a standard H.inf. optimization problem under the requirement that ensure disturbance rejection for a class of disturbance. Robust performance of the proposed controller is checked by a computer simulation.

  • PDF

An Approximate Calculation Model for Electromagnetic Devices Based on a User-Defined Interpolating Function

  • Ye, Xuerong;Deng, Jie;Wang, Yingqi;Zhai, Guofu
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.378-384
    • /
    • 2014
  • Optimization design and robust design are significant measures for improving the performance and reliability of electromagnetic devices (EMDs, specifically refer to relays, contactors in this paper). However, the implementation of the above-mentioned design requires substantial calculation; consequently, on the premise of guaranteeing precision, how to improve the calculation speed is a problem that needs to be solved. This paper proposes a new method for establishing an approximate model for the EMD. It builds a relationship between the input and output of the EMD with different coil voltages and air gaps, by using a user-defined interpolating function. The coefficient of the fitting function is determined based on a quantum particle swarm optimization (QPSO) method. The effectiveness of the method proposed in this paper is verified by the electromagnetic force calculation results of an electromagnetic relay with permanent magnet.

의사결정이론을 이용한 박판성형공정의 최적화 (Optimization of Sheet Metal Forming Process by using Decision-Making Theory)

  • 김경모;인정제
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.125-136
    • /
    • 2012
  • Wrinkle and fracture are two major defects frequently found in the sheet metal forming process. In this process there are more than one design attributes to optimize and several uncontrollable factors which cannot be ignored in determining the optimal values of design variables. Therefore, attempts to reduce defects through a traditional optimization technique are often led to failures. In this research, a new design method for reducing the wrinkle and fracture under uncontrollable factors is presented by using decision-making theory. To avoid the psychological difficulties in determining the scaling constants of the multi-attribute utility function by using the ordinary lottery questions, a pair-wise comparison procedure is adapted to avoid this problem. The effectiveness of the proposed method is illustrated through a robust design of sheet metal forming process of a side member of an automotive body.

평균과 분산에 관한 설계자 선호에 기초한 설계 최적화 (Design Optimization Based on Designer's Preferences for the Mean and Variance)

  • 박종천;김경모;김광호
    • 한국산업융합학회 논문집
    • /
    • 제12권1호
    • /
    • pp.35-42
    • /
    • 2009
  • In Taguchi's quadratic expected loss function used as robustness metric of performance characteristics, the mean and variance contributions are confounded. The consolidation of the mean and variance in the expected loss function may not always be the ideal approach. This paper presents a procedure for multi-attributes design optimization, where the mean and variance of performance characteristics are considered as separate attributes having designer's relative preferences for them and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS) is introduced to attain robust optimal design. The effectiveness of proposed approach is shown with an example of a weld line minimization problem in the injection molding process.

  • PDF

로버스트 변수모형의 비선형 목표계획법 접근방법 (Nonlinear Goal Programming Approach for Robust Parameter Experiments)

  • 이상헌
    • 한국국방경영분석학회지
    • /
    • 제28권1호
    • /
    • pp.47-66
    • /
    • 2002
  • Instead of using signal-to-noise ratio, we attempt to optimize both the mean and variance responses using dual response optimization technique. The alternative experimental strategy analyzes a robust parameter design problem to obtain the best settings that give a target condition on the mean while minimizing its variance. The mean and variance are treated as the two responses of interest to be optimized. Unlike to the crossed array and combined array approaches, our experimental setup requires replicated runs for each control factor's treatment under noise sampling. When the postulated response models are true, they enable the coefficients to be estimated and the desired performance measure to be analyzed more efficiently. The procedure and illustrative example are given for the dual response optimization techniques of nonlinear goal programming.

성능지표 선정을 통한 강인한 칼만필터 설계 (Robust Kalman Filter Design via Selecting Performance Indices)

  • 정종철;허건수
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.59-66
    • /
    • 2005
  • In this paper, a robust stationary Kalman filter is designed by minimizing selected performance indices so that it is less sensitive to uncertainties. The uncertainties include not only stochastic factors such as process noise and measurement noise, but also deterministic factors such as unknown initial estimation error, modeling error and sensing bias. To reduce the effect on the uncertainties, three performance indices that should be minimized are selected based on the quantitative error analysis to both the deterministic and the stochastic uncertainties. The selected indices are the size of the observer gain, the condition number of the observer matrix, and the estimation error variance. The observer gain is obtained by optimally solving the multi-objectives optimization problem that minimizes the indices. The robustness of the proposed filter is demonstrated through the comparison with the standard Kalman filter.

ROBUST PORTFOLIO OPTIMIZATION UNDER HYBRID CEV AND STOCHASTIC VOLATILITY

  • Cao, Jiling;Peng, Beidi;Zhang, Wenjun
    • 대한수학회지
    • /
    • 제59권6호
    • /
    • pp.1153-1170
    • /
    • 2022
  • In this paper, we investigate the portfolio optimization problem under the SVCEV model, which is a hybrid model of constant elasticity of variance (CEV) and stochastic volatility, by taking into account of minimum-entropy robustness. The Hamilton-Jacobi-Bellman (HJB) equation is derived and the first two orders of optimal strategies are obtained by utilizing an asymptotic approximation approach. We also derive the first two orders of practical optimal strategies by knowing that the underlying Ornstein-Uhlenbeck process is not observable. Finally, we conduct numerical experiments and sensitivity analysis on the leading optimal strategy and the first correction term with respect to various values of the model parameters.