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Abstract. In this paper, we investigate the portfolio optimization prob-

lem under the SVCEV model, which is a hybrid model of constant elas-
ticity of variance (CEV) and stochastic volatility, by taking into account

of minimum-entropy robustness. The Hamilton-Jacobi-Bellman (HJB)
equation is derived and the first two orders of optimal strategies are

obtained by utilizing an asymptotic approximation approach. We also

derive the first two orders of practical optimal strategies by knowing that
the underlying Ornstein-Uhlenbeck process is not observable. Finally, we

conduct numerical experiments and sensitivity analysis on the leading op-

timal strategy and the first correction term with respect to various values
of the model parameters.

1. Introduction

In financial economics, a very active line of research focuses on the ques-
tion of how to allocate a portfolio between a risky and risk-free asset in a
dynamical environment. The research of portfolio optimization selections in
continuous-time for a market under the Black-Scholes frame was first investi-
gated by Merton in [13] and [14], through the dynamic programming method.
After nearly twenty years, Cox and Huang [5] conducted a parallel study of
this topic when there exist non-negative constraints on consumption and final
wealth by using a martingale method. As we know, the Black-Scholes mar-
ket framework assumes the volatility of a risky asset is a constant. However,
some empirical studies such as Rubinstein [16] and Jackwerth and Rubinstein
[10] have indicated that the implied volatility of a risky asset is characterized
by a smile or skew effect. In order to reflect this relationship, in 1975, Cox
[4] developed a local stochastic volatility model, currently known as the con-
stant elasticity of variance (CEV) model. Further empirical evidence tested
by Macbeth and Merville [11] has shown that Cox’s CEV model is superior to
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the Black-Scholes model in call option valuation. Along this direction, Gao [8]
utilized the CEV model to study the portfolio optimization problem of pension
plans. One thing that we should mention is that in the CEV model, volatility
is perfectly correlated either positively or negatively with the underlying asset
price. However, there is no clear evidence that there is a perfect definite cor-
relation all the time, as shown in Harvey [9]. This motivated Choi et al. to
incorporate stochastic volatility driven by a hidden process into the CEV model
in [3]. In the sequel, we shall call this model the SVCEV model. In 2015, Yang
et al. [17] specified the SVCEV model for an underlying process of volatility as
a fast mean-reverting Ornstein-Uhlenbeck (OU) process and applied this model
to optimal portfolio selection for pension plans under the CRRA utility. Fur-
thermore, Yang et al. [18] in 2014 incorporated the stochastic volatility driven
by a hidden OU process in a slightly different setting and the resultant model
is sometime called the SEV model in the literature.

A fundamental assumption in aforementioned work on portfolio choice is
the absence of any uncertainty about the return process. Typically, we ob-
tain point estimates for the asset return parameters and subsequently assume
these are known and fixed. However, as mentioned in [12], there is a lack of
consensus concerning the expected risk premium or even the model generating
excess return among financial economists. Some authors believe that the fu-
ture expected returns should be lower, while some others are skeptical about
the reliability of historical estimates of equity premium, based on the argument
that historical studies suffer from severe ex post survival bias. Due to these and
many reasons, it is desirable to take uncertainty about the return process into
account when studying optimal dynamic portfolio decisions. The continuous-
time methodology on robustness developed in Anderson et al. [1] provides a
natural framework for portfolio choice problems involving uncertainty about
the return process for equities. Using this methodology, Maenhout derived
consumption and portfolio rules that are robust to a particular type of model
specification, stemming from uncertainty about the return process. Historically,
this type of robustness is based on the key assumption that the decision-maker
worries about some worse-case scenario. Here, we shall adopt the approach
employed by Maenhout in [12], in which the disparity between the reference
model that the decision-maker is skeptical about and the worst-case alterna-
tive model that he or she considers is constrained by a preference parameter,
quantifying the strength of the preference for robustness.

In a recent paper [15], Peng et al. studied the portfolio selection problem
under the SVCEV model with the exponential utility function (CARA). In
this paper, we extend this study by taking into account of minimum-entropy
robustness, in order to allow decision makers to doubt the model for misspec-
ification and consider alternative models. To the best of our knowledge, this
has not been considered before under the SVCEV model framework. Thus, our
contributions in this paper fill some gap in the literature. The rest of the paper
is structured as follows. Section 2 briefly introduces the basic model setup for
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exponential utility without taking account of robustness. Section 3 describes
the definition of robustness in terms of minimum-entropy and establishes the
relevant Hamiton-Jacobi-Bellman (HJB) equation with robustness factor by
dynamic programming. Furthermore, a nonlinear partial differential equation
of the value function is derived. In Section 4, we use an asymptotic expansion
approach to derive an approximation of the value function. In Sections 5 and
6, we derive asymptotic approximations of optional strategies, including the
leading term of optimal strategy and the first correction term. In Section 6, we
conduct numerical experiments and investigate the behaviour and sensitivity of
the leading term of optimal strategy and the first correction term with respect
to various model parameters. Finally, Section 7 concludes.

2. Basic portfolio selection under SVCEV

In this section, we present a simple financial market setup and formulate a
basic portfolio selection problem. We consider a market structure that consists
of a risk-free asset (treasury bond or bank account) whose price dynamics are
driven by the following ordinary differential equation

(2.1) dBt = rBtdt,

and a risky asset whose price dynamics satisfy the stochastic different equations

dSt
St

= µdt+ σ(Yt)S
β/2
t dW s

t ,(2.2)

dYt = α(m− Yt)dt+ δdW y
t ,(2.3)

where r > 0, α > 0, δ > 0, β < 0, µ and m are constants, σ(·) is assumed to
be a smooth, bounded and positive function, and {W s

t : t ≥ 0} and {W y
t : t ≥

0} are two correlated standard Brownian motions with correlation coefficient
−1 < ρ < 1. Here, r > 0 is the risk-free rate. The Ornstein-Uhlenbeck (OU)
process {Yt : t ≥ 0} given in Eq. (2.3) is characterized by its typical time to
obtain back to the mean level m of its long-run distribution. The parameter α
determines the speed of mean-reversion and δ controls the volatility of Yt. In
[2] and [3], the model described in Eq. (2.2) and Eq. (2.3) is called the SVCEV
model.

Let Xt be the wealth of an investor at time t ≥ 0 and πt be the proportion
of the wealth invested in the risky asset. Then, the proportion of the wealth
invested in the risk-free asset is 1 − πt. Under the SVCEV model, the wealth
evolves according to the following stochastic different equation

dXt = πtXt
dSt
St

+ (1− πt)Xt
dBt
Bt

, 0 ≤ t ≤ T.

Applying Eq. (2.1) and Eq. (2.2), we obtain

(2.4) dXt = [r + (µ− r)πt]Xtdt+ πtσ(Yt)S
β/2
t XtdW

s
t , 0 ≤ t ≤ T.
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As usual, the interest of the investor is to find a strategy π∗t which maximizes
the conditional expectation of the utility of the terminal wealth, given by

(2.5) E [U(XT ) : St = s,Xt = x, Yt = y] .

To find the optimal strategy π∗t , we introduce the value function V defined by

(2.6) V (t, s, x, y) := max
πt

E [U(XT ) : St = s,Xt = x, Yt = y] .

Then the Hamilton-Jacob-Bellman (HJB) equation associated with the opti-
mization problem is given by

(2.7) 0 = max
πt
DπtV (t, s, x, y)

with the terminal condition V (T, s, x, y) = U(x), where DπtV (t, s, x, y) is the
infinitesimal generator given by

DπtV (t, s, x, y) = Vt + µsVs + rxVx + α(m− y)Vy

+
1

2
σ(y)2sβ+2Vss +

1

2
δ2Vyy + δρσ(y)s

β
2 +1Vsy

+ πt

(
(µ− r)xVx + σ(y)2sβ+1xVsx + δρσ(y)s

β
2 xVxy

)
+

1

2
π2
t σ(y)2sβx2Vxx.

In [17], Yang et al. considered this problem under the same model framework
with the power utility function (CRRA) given by

U(x) =
xp

p
, p 6= 0, p < 1.

Using an asymptotic analysis approach, they derived a correction to the optimal
strategy and subsequently the fine structure of the corrected optimal strategy
is revealed. Their result is a generalization of Merton’s strategy in terms of the
stochastic volatility and the elasticity of variance. In this paper, we consider
this problem under a more general model framework than the one mentioned
with the exponential utility function (CARA) given by

U(x) = − 1

γ
e−γx, γ > 0.

Our model framework involves with minimum-entropy robustness.

3. Portfolio selection under SVCEV with
minimum-entropy robustness

Following [1] and [12], we consider portfolio rules that are robust to a par-
ticular type of model misspecification, stemming from uncertainty about the
return process. The main goal for the robustness of decision rules to model
misspecification is to design decision rules that not only work well when the
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underlying model for the state variable holds exactly, but also perform reason-
ably well if there is some form of model misspecification. Here, we assume that
the decision maker worries about some worst-case scenario. In particular, the
disparity between the “referenced model” that the agent is skeptical and the
worse-case alternative model that he considers is constrained by a (preference)
parameter, quantifying the strength of the preference for robustness.

Similar to the discussions in [12, Section 1.1], the objective DπtV in Eq. (2.7)
is essentially the mechanism through robustness is introduced. Heuristically,
DπtV can be thought of as 1

dtE[dV ]. A key insight in [1] is that this differential
expectation operator, used to calculate the differential continuation payoff in
the HJB equation, reflects a particular underlying model for the state variable
Xt. The decision maker accepts this “reference model” as useful, but doubts
it to be misspecified. So, he or she likes to consider alternative models when
calculating his/her continuation payoff. A preference for robustness is achieved
by having the decision maker guard against an adverse alternative model that
is reasonably similar to the reference model. In a pure diffusion setting like
Eq. (2.4), Anderson et al. showed in [1, Section 2] that this adverse alternative
model simply adds an endogenous drift u(Xt) to the dynamics of Xt. This
approach was further employed by Maenhout in [12], where the diffusion term is
adjusted. Here, we follow the method of Maenhout [12, Section 1.1] to introduce
robustness of model misspecification by adjusting the diffusion part dW s

t term
in Eq. (2.4) to σ(πt, Xt, St)u(Xt)dt+dW

s
t , where the term σ(πt, Xt, St)u(Xt)dt

captures the uncertainty of return process. Thus, the adjusted wealth process
dynamics evolve according to the following SDE:

(3.1) dXt = µ(πt, Xt)dt+ σ(πt, Xt, St) [σ(πt, Xt, St)u(Xt)dt+ dW s
t ] ,

where µ(πt, Xt) and σ(πt, Xt, St) denote the drift and diffusion coefficients in
Eq. (2.4), respectively.

The main problem that we tackle in this section is still to find a strategy
π∗t which maximizes the conditional expectation of the utility of the termi-
nal wealth given by Eq. (2.5), via the value function defined in Eq. (2.6), but
with respect to the adjusted wealth process dynamics in Eq. (3.1). The drift
adjustment u(Xt) will be chosen to minimize the sum of the expected contin-
uous payoff of Eq. (3.1). In order to reflect the additional drift component in
Eq. (3.1), we need to add an entropy penalty term. Based upon this analysis,
the infinitesimal generator is adjusted to

min
u

(
DπtV (t, s, x, y) + u(Xt)σ(πt, Xt, St)

2Vx +
1

2θ̂
u(Xt)

2σ(πt, Xt, St)
2

)
,

where the entropy penalty is weighted by 1
θ̂
. The adjusted HJB equation be-

comes:
(3.2)

0 = max
πt

min
u

(
DπtV (t, s, x, y) + π2

t σ(y)2u(x)sβx2Vx +
1

2θ̂
π2
t σ(y)2u(x)2sβx2

)
.
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The minimization part yields u∗ = −θ̂Vx. Then, we obtain the optimal choice
π∗t by calculating the maximization part in Eq. (3.2) with u∗ as follows:

(3.3) π∗t = − (µ− r)Vx + σ(y)2sβ+1Vsx + δρσ(y)s
β
2 Vxy

σ(y)2sβx
(
Vxx − θ̂V 2

x

) .

The parameter θ̂ ≥ 0 measures the strength of the preference for robustness.

In [1], θ̂ is fixed and state-independent. In [12], Maenhout replaced it with

a state-dependent version of θ. In this paper, we follow [12] to replace θ̂ by
Ψ(t, s, x, y). Moreover, for the desired homotheticity property, we set

(3.4) Ψ(t, s, x, y) =
θ

(1− γ)V (t, s, x, y)
,

where θ is a constant.

Theorem 3.1. Under the previous assumptions, the option strategy π∗t under
the SVCEV model with minimum-entropy robustness can take the following
form:

(3.5) π∗t =
(1− γ)(µ− r)

γ(1− γ − θ)aσ2sβx
− γ(1− γ)sgs

(1− γ − θ)ax
− (1− γ)δρgy

(1− γ − θ)aσsβ/2x
,

where a = exp(r(T − t)) and g satisfies the following PDE:

gt +
rγ − r + θµ

γ − 1 + θ
sgs −

γθσ2sβ+2

2(γ − 1 + θ)
g2
s +

α((γ − 1)(m− y) + θ(m− y))

γ − 1 + θ
gy

(3.6)

+
δρ(µ− r)(1− γ)

(γ − 1 + θ)σsβ/2
gy +

γδ2((1− γ)(1− ρ2)− θ)
2(γ − 1 + θ)

g2
y +

1

2
σ2sβ+2gss +

1

2
δ2gyy

+ δρσsβ/2+1gsy −
γδθρσsβ/2+1

γ − 1 + θ
gygs +

(γ − 1)(µ− r)2

2γ(γ − 1 + θ)σ2sβ
= 0

with the terminal condition g(T, s, y) = 0.

Proof. We conjecture the value function with the following form:

(3.7) V (t, s, x, y) = − 1

γ
exp

{
−γ
(
a(t)(x− b(t)) + g(t, s, y)

)}
.

Substituting V , u∗ and π∗t into Eq. (3.2), we can obtain the following PDE:

at(x− b)− abt + arx+ gt +
rγ − r + θµ

γ − 1 + θ
sgs −

γθσ2sβ+2

2(γ − 1 + θ)
g2
s

(3.8)

+
α((γ − 1)(m− y) + θ(m− y))

γ − 1 + θ
gy +

δρ(µ− r)(1− γ)

(γ − 1 + θ)δ sβ/2
gy

+
γδ2((1− γ)(1− ρ2)− θ)

2(γ − 1 + θ)
g2
y + +

1

2
σ2sβ+2gss +

1

2
δ2gyy + δρσsβ/2+1gsy
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− γδθρσsβ/2+1

γ − 1 + θ
gsgy +

(γ − 1)(µ− r)2

2γ(γ − 1 + θ)σ2sβ
= 0,

where a, b and σ are short notations for functions a(t), b(t) and σ(y). Eq. (3.8)
can be decomposed into three differential equations

at + ra = 0, a(T ) = 1,(3.9)

atb+ abt = 0, b(T ) = 0,(3.10)

and Eq. (3.6). Note that Eq. (3.9) and Eq. (3.10) have closed-form solutions
a(t) = exp(r(T − t)) and b(t) = 0, respectively, but Eq. (3.6) does not have a
closed-form solution. Finally, substituting Ψ and V in Eq. (3.4) and Eq. (3.7)
into Eq. (3.3) gives formula (3.5). �

4. Asymptotic value function

Since it is impossible to obtain a closed-form solution to Eq. (3.6), in this
section, we apply the approximation approach used in [6], [7], [17] and [18]
to obtain an asymptotic approximation of the value function. Note that the
process {Yt : t ≥ 0} is characterized by an infinitesimal generator A = αLY ,
where

LY := ν2 ∂
2

∂y2
+ (m− y)

∂

∂y
.

Here, ν is given by ν := δ√
2α

. The long-term distribution of {Yt : t ≥ 0} is the

normal distribution N (m, ν2) whose probability density function is denoted by
Φ(y).

Now, we express α and δ in terms of a small and positive parameter ε such

that α = 1
ε and δ =

√
2ν√
ε

. Then, Eq. (3.6) becomes

1

ε

(
LY g +

ν2γ((1− γ)(1− ρ2)− θ)
γ − 1 + θ

g2
y

)
+

1√
ε

(√
2νρσsβ/2+1gsy

(4.1)

−
√

2νγθρσsβ/2+1

γ − 1 + θ
gygs +

√
2νρ(µ− r)(1− γ)

σ(γ − 1 + θ)sβ/2
gy

)
+ gt +

rγ − r + θµ

γ − 1 + θ
sgs

− γθσ2sβ+2

2(γ − 1 + θ)
g2
s +

1

2
σ2sβ+2gss +

(γ − 1)(µ− r)2

2γ(γ − 1 + θ)σ2sβ
= 0.

Next, we consider the power series representation of g as increasing powers
of ε as follows:

(4.2) g = g0 +
√
εg1 + εg2 + · · · .

Substituting the representation of g into Eq. (4.1), then the O( 1
ε )-term yields

(4.3) LY g0 +
ν2γ((1− γ)(1− ρ2)− θ)

γ − 1 + θ
g2

0,y = 0.
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The solution to Eq. (4.3) can be expressed in the following form:

g0 =
γ − 1 + θ

γ((1− γ)(1− ρ2)− θ)
ln

(
c1(s, t)

∫ y

0

e
(u−m)2

2ν2 du+ c2(s, t)

)
,

where c1 and c2 are some functions of s and t. Hence, g0 grows unreasonably
fast with respect to ln y unless c1 = 0. To avoid this, we assume that c1 = 0 and
consequently g0 is independent of y. Substituting the representation of g into

Eq. (4.1), the O
(

1√
ε

)
-term yields LY g1 = 0, whose solution can be expressed

as

g1 = c3(s, t)

∫ y

0

e
(u−m)2

2nu2 du+ c4(s, t).

Similar to the case of g0, we assume that c3 = 0 in order to avoid that g1 grows
unreasonably fast with respect to y. As a result, g1 is also independent of y.

In our next result, we present an explicit closed-form formula for g0.

Theorem 4.1. For the power series representation of g as increasing powers
of ε,

g = g0 +
√
εg1 + εg2 + · · · ,

we assume that g0 and g1 do not grow unreasonably fast. Then we can obtain
the solution g0 independent of y with the following form:

g0(t, s) = C(t) +D(t)s−β ,

where for 0 < t < T , C(t) and D(t) are given by

C(t) =
1

2
σ̄2β(β + 1)

{
m2(T − t)− 1

λ
ln

(
m1 −m2

m1 −m2e−a(m2−m1)(T−t)

)}
,

D(t) =
m2 −m2e

λ(m1−m2)(T−t)

1− m2

m1
eλ(m1−m2)(T−t) ,

with

λ =
β2γθσ̄2

2(γ − 1 + θ)
,

m1 =
−(rγ − r + θµ) +

√
(rγ − r + θµ)2 + θ

(
σ̄
σ̆

)2
(γ − 1)(µ− r)2

βγθσ̄2
,

m2 =
−(rγ − r + θµ)−

√
(rγ − r + θµ)2 + θ

(
σ̄
σ̆

)2
(γ − 1)(µ− r)2

βγθσ̄2
.

Proof. From the O(1)-term in Eq. (4.1), the y-independence of g0 and g1 yields

LY g2 + g0,t +
rγ − r + θµ

γ − 1 + θ
sg0,s −

γθσ2sβ+2

2(γ − 1 + θ)
g2

0,s +
1

2
σ2sβ+2g0,ss(4.4)

+
(γ − 1)(µ− r)2

2γ(γ − 1 + θ)σ2sβ
= 0.
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Note that Eq. (4.4) is a Poisson equation of the following type:

LY g2 + f(t, s, y) = 0.

The necessary condition for this Poisson equation to have a solution is the
centring condition 〈f〉 = 0, which leads to

g0,t +
rγ − r + θµ

γ − 1 + θ
sg0,s −

γθσ̄2sβ+2

2(γ − 1 + θ)
g2

0,s(4.5)

+
1

2
σ̄2sβ+2g0,ss +

(γ − 1)(µ− r)2

2γ(γ − 1 + θ)σ̆2sβ
= 0,

with the terminal condition g0(T ) = 0, where σ̄ := 〈σ2〉 12 and σ̆ :=
〈

1
σ2

〉− 1
2 .

Here, 〈·〉 denotes the expectation with respect to N (m, ν2), i.e.,

〈f〉 =

∫ +∞

−∞
f(t, s, y)Φ(y)dy.

In order to solve Eq. (4.5), we conjecture that its solution has the following
form:

g0(t, s) = C(t) +D(t)s−β .

Substituting g0 into Eq. (4.5), we obtain two ordinary differential equations:

Dt −
β2γθσ̄2

2(γ − 1 + θ)
D2 − β(rγ − r + θµ)

γ − 1 + θ
D +

(γ − 1)(µ− r)2

2γ(γ − 1 + θ)σ̆2
= 0,(4.6)

Ct +
1

2
σ̄2β(β + 1)D = 0,(4.7)

with terminal conditions C(T ) = 0 and D(T ) = 0, respectively. The solution
to Eq. (4.6) is given by

D(t) =
m2 −m2e

λ(m1−m2)(T−t)

1− m2

m1
eλ(m1−m2)(T−t) ,

where λ, m1 and m2 are defined by

λ =
β2γθσ̄2

2(γ − 1 + θ)
,

m1 =
−(rγ − r + θµ) +

√
(rγ − r + θµ)2 + θ

(
σ̄
σ̆

)2
(γ − 1)(µ− r)2

βγθσ̄2
,

m2 =
−(rγ − r + θµ)−

√
(rγ − r + θµ)2 + θ

(
σ̄
σ̆

)2
(γ − 1)(µ− r)2

βγθσ̄2
,

respectively. The solution to Eq. (4.7) is given by

C(t) =
1

2
σ̄2β(β + 1)

{
m2(T − t)− 1

λ
ln

(
m1 −m2

m1 −m2e−a(m2−m1)(T−t)

)}
.

�
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Unlike the case for g0, we cannot obtain an explicit closed-form formula for
g1. Nevertheless, we provide a result related to g1 below.

Theorem 4.2. For the power series representation of g as increasing powers
of ε,

g = g0 +
√
εg1 + εg2 + · · · ,

we assume that g0 and g1 do not grow unreasonably fast. Then g1 is the solution
to the following PDE:

g1,t +
rγ − r + θµ

γ − 1 + θ
sg1,s+

1

2
σ̄2sβ+2g1,ss+

√
2νρsβ/2+1 ×

{
1

2

(
(β + 2)sβ+1E(g0)

+ sβ+2F(g0)

)
〈σϕ′(y)〉+

(γ − 1)(µ− r)2

2γ(γ − 1 + θ)
βs−β−1〈σψ′(y)〉

}
+

√
2νβγθρB(t)s−β/2

γ − 1 + θ

(
1

2
sβ+2〈σϕ′(y)〉E(g0)− (γ − 1)(µ− r)2

2γ(γ − 1 + θ)sβ
〈σψ′(y)〉

)
+

√
2νρ(µ− r)(1− γ)

(γ − 1 + θ)sβ/2

(
1

2
sβ+2〈 1

σ
ϕ′(y)〉E(g0)− (γ − 1)(µ− r)2

2γ(γ − 1 + θ)sβ
〈 1
σ
ψ′(y)〉

)
− γθσ̄2sβ+2

γ − 1 + θ
g0,sg1,s = 0,

where E(g0) and F(g0) are given by

E(g0) =
γθ

γ − 1 + θ
g2

0,s − g0,ss,

F(g0) =
2γθg0,sg0,ss

γ − 1 + θ
− g0,sss,

respectively.

Proof. Considering the O(
√
ε)-term in Eq. (4.1), we obtain the following PDE

for g1:

LY g3 + g1,t +
rγ − r + θµ

γ − 1 + θ
sg1,s +

1

2
σ2sβ+2g1,ss(4.8)

+
√

2νρσsβ/2+1g2,sy −
√

2νγθρσsβ/2+1

γ − 1 + θ
g2,yg0,s

+

√
2νρ(µ− r)(1− γ)

(γ − 1 + θ)σsβ/2
g2,y −

γθσ2sβ+2

γ − 1 + θ
g0,sg1,s = 0.

Note that Eq. (4.8) is a Poisson equation, which can be used to determine g1 if
we apply the centring condition. However, we need to determine g2 first. For
this purpose, we subtract Eq. (4.3) from Eq. (4.4) to get a PDE of g2 as

LY g2 =
1

2
sβ+2(σ2 − σ̄2)E(g0)− (γ − 1)(µ− r)2

2γ(γ − 1 + θ)sβ

(
1

σ2
− 1

σ̆2

)
,
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where E(g0) is given by

E(g0) =
γθ

γ − 1 + θ
g2

0,s − g0,ss.

Then, g2 can be expressed as

g2 =
1

2
sβ+2ϕ(y)E(g0)− (γ − 1)(µ− r)2

2γ(γ − 1 + θ)sβ
ψ(y) + k(s, t),

where k(s, t) is some function independent of y, and ϕ and ψ are solutions to
the following two differential equations:

LY ϕ = σ(y)2 − σ̄2,

LY ψ =
1

σ(y)2
− 1

σ̆2
,

respectively. Consequently, the partial derivatives g2,y and g2,sy of g2 can be
expressed as

g2,y =
1

2
sβ+2ϕ′(y)E(g0)− (γ − 1)(µ− r)2

2γ(γ − 1 + θ)sβ
ψ′(y),

g2,sy =
1

2

(
(β+2)sβ+1E(g0)+sβ+2F(g0)

)
ϕ′(y)+

(γ − 1)(µ− r)2

2γ(γ − 1 + θ)
βs−β−1ψ′(y),

respectively, where F(g0,s, g0,ss) is given by

F(g0) =
2γθg0,sg0,ss

γ − 1 + θ
− g0,sss.

Finally, if we plug g2,y and g2,sy into Eq. (4.8) and then apply the centring
condition as we did for Eq. (4.4), we can derive the following PDE for g1:

g1,t +
rγ − r + θµ

γ − 1 + θ
sg1,s+

1

2
σ̄2sβ+2g1,ss+

√
2νρsβ/2+1 ×

{
1

2

(
(β + 2)sβ+1E(g0)

(4.9)

+ sβ+2F(g0)

)
〈σϕ′(y)〉+

(γ − 1)(µ− r)2

2γ(γ − 1 + θ)
βs−β−1〈σψ′(y)〉

}
+

√
2νβγθρB(t)s−β/2

γ − 1 + θ

(
1

2
sβ+2〈σϕ′(y)〉E(g0)− (γ − 1)(µ− r)2

2γ(γ − 1 + θ)sβ
〈σψ′(y)〉

)
+

√
2νρ(µ− r)(1− γ)

(γ − 1 + θ)sβ/2

(
1

2
sβ+2〈 1

σ
ϕ′(y)〉E(g0)− (γ − 1)(µ− r)2

2γ(γ − 1 + θ)sβ
〈 1
σ
ψ′(y)〉

)
− γθσ̄2sβ+2

γ − 1 + θ
g0,sg1,s = 0.

It is not possible to solve Eq. (4.9) analytically. So, we will solve it numerically.
�
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5. Optimal strategies

In this section, we discuss asymptotic approximation of the solution to the
portfolio selection problem under the SVCEV model with minimum-entropy
robustness.

First, we write π∗t in an asymptotic expansion form as

π∗t = π∗0 +
√
επ∗1 + · · · .

Substituting the expansions of π∗t and g in Eq. (4.2) to Eq. (3.5), we obtain

(5.1) π∗0 =
(1− γ)(µ− r)

γ(1− γ − θ)aσ2sβx
− (1− γ)sg0,s

(1− γ − θ)ax
,

and

(5.2) π∗1 = − (1− γ)sg1,s

(1− γ − θ)ax
−
√

2(1− γ)ρνg2,y

(1− γ − θ)aσsβ/2x
,

respectively. Here, we call π∗0 the leading order optimal strategy and π∗1 the
first correction term.

If the agent desires no robustness (or has complete faith in validity of the
model), then θ = 0. In addition, if σ is also a constant, then π∗0 becomes

(5.3) π∗0 =
µ− r

γaσ2sβx
− sg0,s

ax
,

which is consistent with the result in Theorem 5.2 of [18]. Further, if β =
0, then π∗0 in Eq. (5.3) corresponds to the result for the case in which the
risky asset follows geometric Brownian motion, that is, under the Black-Scholes
framework.

Note that formulas of π∗0 in Eq. (5.1) and π∗1 in Eq. (5.2) contain the σ-
terms. In practice, the stochastic volatility level given by the hidden process
{Yt : t ≥ 0} is not directly observable. So, following the work of Yang et
al. in [18] and [17], we derive trading strategies which do not depend upon the
unobserved variable.

Theorem 5.1. Under the SVCEV model with minimum-entropy robustness,
the leading order optimal strategy π∗0 can take the practical form of

(5.4) π∗0 =
(1− γ)(µ− r)

γ(1− γ − θ)aσ̄2sβx
− (1− γ)sg0,s

(1− γ − θ)ax
,

and the first correction term π∗1 can take the practical form of

(5.5) π∗1 = − (1− γ)sg1,s

(1− γ − θ)ax
−
√

2(1− γ)ρν〈σg2,y〉
(1− γ − θ)aσ̄2sβ/2x

.

Proof. We substitute V , Ψ and b(t) = 0 into Eq. (3.2), the HJB equation
becomes

gt −
1

2
γδ2g2

y − δρσs
β
2 +1(γgsgy − gsy) + µsgs −

1

2
σ2sβ+2(γg2

s − gss)(5.6)
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+ αLY g + max
πt

(
−γ(1− γ − θ)

2(1− γ)
a2σ2sβx2π2

t

+
(

(µ− r)ax− γaσ2sβ+1xgs − δργaσs
β
2 xgy

)
πt

)
= 0.

Substituting the expansion of g and πt into Eq. (5.6) and considering the O(1)-
term, we can derive the following equation:

LY g2 + g0,t + max
π0

(
−γ(1− γ − θ)

2(1− γ)
a2σ2sβx2π2

0 + (µ− r)axπ0 +Aσ,π0g0

)
= 0,

where the operator Aσ,π0 is defined by

Aσ,π0 := µs∂s −
1

2
σ2sβ+2(γ∂2

s − ∂ss)− π0γaσ
2sβ+1x∂s,

and the centering condition leads to

g0,t + max
π0

〈
−γ(1− γ − θ)

2(1− γ)
a2σ2sβx2π2

0 + (µ− r)axπ0 +Aσ,π0g0

〉
= 0.

The maximization part yields the leading order optimal strategy given in
Eq. (5.4).

The O(
√
ε)-term in Eq. (5.6) leads to the following equation:

LY g3 + g1,t −
√

2ρνσs
β
2 +1(γg0,sg2,y − g2,sy)− 1

2
σ2sβ+2(2γg0,sg1,s − g1,ss)

(5.7)

+ µsg1,s + max
π0,π1

(
−γa2σ2sβx2π0π1 +

γθ

1− γ
a2σ2sβx2π0π1

+ ((µ− r)ax− γaσ2sβ+1xg0,s)π1

− γaσ2sβ+1xg1,sπ0 −
√

2γρνaσs
β
2 xg2,yπ0

)
= 0.

Note that Eq. (5.7) can be re-written as

LY g3 + g1,t + max
π0,π1

(
(µ− r)axπ1 +Aσ,π0(g0, g1) +Aσ,π0(g0, g2) +Aσ,π1(g0)

(5.8)

− γa2σ2sβx2π0π1 +
γθ

1− γ
a2σ2sβx2π0π1

)
= 0,

where Aσ,π0(g0, g1), Aσ,π0(g0, g2) and Aσ,π1(g0) are defined by

Aσ,π0(g0, g1) := µsg1,s +
1

2
σ2sβ+2g1,ss − γaσ2sβ+1xg1,sπ0 − γσ2sβ+2g0,sg1,s,

Aσ,π0(g0, g2) :=
√

2ρνσs
β
2 +1(g2,sy − γg2,yg0,s)−

√
2γρνaσs

β
2 xg2,yπ0,

Aσ,π1(g0) := −γaσ2sβ+1xg0,sπ1,
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respectively. Similarly, the centering condition of Eq. (5.8) is equivalent to

g1,t + µsg1,s −
√

2ρνσ̃s
β
2 +1(γg0,sg2,y − g2,sy)− 1

2
σ̄2sβ+2(2γg0,sg1,s − g1,ss)

+ max
π0,π1

(
−a2σ̄2sβx2γπ0π1 + ax((µ− r)− σ̄2sβ+1γg0,s)π1 − γaσ̄2sβ+1xg1,sπ0

−
√

2γρνaxs
β
2 〈σg2,y〉π0 +

γθ

1− γ
a2σ̄2sβx2π0π1

)
= 0,

where σ̃ := 〈σ〉. Again, by working on the maximization part, we can obtain
the first correction term π∗1 given by (5.5). �

6. Numerical results

In this section, we conduct a numerical study to investigate the behaviour
and sensitivity of the approximations π∗0 and π∗1 of the optimal strategy with
respect to variations of parameter values. The values of parameters used in
this section are given in Table 1, whenever they are required to be fixed.

Table 1. The role and numerical value of parameters.

Parameter Role Value
s risky asset price 100
r interest rate 0.05
µ mean return of risky asset 0.12
α mean reversion rate 104

t initial time 0
T terminal time 1.5
γ utility coefficient 0.05
x instaneous wealth 1000
ρ correlation coefficient 0.5
δ diffusion coefficient of OU process 0.03
θ robust factor 0.1
β elasticity of variance -0.1

Note that in Eq. (5.5), the first correction term π∗1 requires the value of g1,
which is the solution to Eq. (4.9). Using the values of parameters involved in
this PDE as given in Table 1, we use a finite difference method to solve this
equation. After that, we are able to plot π∗0 and π∗1 against various parameters.
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Figure 1. Plot of π∗0 and π∗1 against µ− r for different values of θ

First, we consider how the leading order strategy and the first correction
term, corresponding to different values of robustness parameter θ, vary with
respect to the excess return µ − r. As Figure 1 shows, for a fixed θ value, π∗0
increases monotonically as the excess return increases to some extent. After
reaching its peak, π∗0 begins to descend, due to risk aversion effect. In contrast,
for a fixed θ value, π∗1 decreases monotonically as the excess return increases
to some extent. After reaching its trough, π∗1 begins to increase. We can image
that π∗1 is the correction due to the OU process underneath, so that as excess
return increases, the effect on optimal strategy from the underlying OU process
{Yt : t ≥ 0} also diminishes to some extent and then increases. Furthermore,
when all other parameters are fixed, π∗1 decreases as θ increases. This indicates
that more anxiety causes more negative proportion in the correction term.

As mentioned previously, the case θ = 0 corresponds to optimal portfolio
strategies without considering robustness. As θ increases, there is more robust-
ness from the model. When the excess return µ − r is less than 60% and all
other parameters are fixed, π∗0 increases when θ increases. As π∗0 is the leading
order strategy, this means that when µ−r is less than 60%, the portfolio weight
allocated to risky asset increases. This finding is opposite to that result in [12]
for the case of power utility, which says that the portfolio weight allocated to
risky asset decreases as θ increase when µ− r is 6%, refer to page 967 of [12].

In Figures 2, 3 and 4, we set θ = 14 as it is done in Maenhout [12]. In
Figure 2, β has three selected negative values as well as 0. When β = 0 and α
is large enough (e.g., α = 104), our model in Eq. (2.2)-(2.3) can be regarded as
an approximation of geometric Brownian motion, that is, the case under the
Black-Scholes framework. In particular, π∗0 corresponds to Merton’s optimal
strategy in the Black-Scholes case and π∗1 is the first correction term perturbed
by the OU process {Yt : t ≥ 0}. The choice of negative values of β is to reflect
the leverage effect, where as the price of risky asset (e.g., a stock) increases
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the volatility decreases. For the chosen fixed value of risky asset price s = 100,
a bigger value of β represents a bigger volatility, and thus less proportion in
the leading term π∗0 . The correction term π∗1 is less negative as the volatility
increases, because σ with the underlying stochastic process {Yt : t ≥ 0} is
relative less influential as sβ/2 increases. Figure 3 displays that the leading
optimal strategy π∗0 decreases as γ increases in a way similar to that of an
exponential decay graph; whereas π∗1 has a positive correlation with γ. Figure
4 shows a negative correlation of π∗0 to β, because π∗0 decreases as volatility
increases. The reason for positive correlation between π∗1 and β is because that
π∗1 becomes less significant as volatility increases.
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Figure 2. Plot of π∗0 and π∗1 against µ− r
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Figure 3. Plot of the leading-term optimal strategy and the
first correction term against γ
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Figure 4. Plot of the leading-term optimal strategy and the
first correction term against β

7. Conclusion

In this paper, we have investigated the optimal portfolio allocation problem
under the SVCEV model with taking account of minimum-entropy robustness.
The CARA utility function is implemented in particular. Applying an as-
ymptotic approximation approach, we have derived the leading term optimal
strategy and the first correction term for the problem. We have also undertook
numerical experiments, and investigated how the leading optimal strategy and
the first correction term vary with the excess return in terms of different values
of the robustness parameter θ. After fixing the best calibrated value of θ, we
have conducted sensitivity analysis on the leading term optimal strategy and
the first correction term with respect to the elasticity parameter β and the
CARA coefficient γ.
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