• Title/Summary/Keyword: robust condition

Search Result 753, Processing Time 0.023 seconds

Robust Control for the System with Unmatched Uncertainty (입력정합조건을 만족하지 않는 시스템에 대한 강인 제어)

  • Jeon, Bo-Kyoung;Chang, Pyung-Huh;Park, Juyi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.95-101
    • /
    • 2001
  • Most robust control schemes for stabilizing the systems with uncertainties require that the systems are satisfied with matching conditions. This paper is proposed to robust control using the time delay estimation for the nonlinear single input systems not satisfying the matching conditions. Synthetic input concept is used to design the control law. The unmatched uncertainties considered in this paper are more general than other studies and they need not a special form or information about their bound. We applied the proposed method to a single pendulum with a motor system.

  • PDF

Robust Fuzzy Load-Frequency Control of Nonlinear Power Systems Using Intelligent Digital Redesign Technique (지능형 디지털 재설계 기법을 이용한 비선형 전력 계통의 강인 퍼지 부하 주파수 제어)

  • 이남수;이연우;전상원;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.142-145
    • /
    • 2000
  • A new robust load-frequency control (LFC) methodology is proposed for nonlinear power systems with the valve position limits of the governor in the presence of parametric uncertainties. The Takagi-Sugeno (TS) fuzzy model is adopted for fuzzy modeling of the nonlinear power system. A sufficient condition of the robust stability is presented in the sense of Lyapunov for the TS fuzzy model with parametric uncertainties. The intelligent digital redesign technique for the uncertain nonlinear power system is also studied. The effectiveness of the proposed robust fuzzy LFC controller design method is demonstrated through a numerical simulation.

  • PDF

Design of Robust and Non-fragile $H_{\infty}$ Kalman-type Filter for System with Parameter Uncertainties: PLMI Approach (변수 불확실성을 가지는 시스템에 대한 견실비약성 $H_{\infty}$ 칼만형필터 설계: PLMI 접근법)

  • Kim, Joon Ki;Yang, Seung Hyeop;Bang, Kyung Ho;Park, Hong Bae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.181-186
    • /
    • 2012
  • In this paper, we describe the synthesis of robust and non-fragile Kalman filter design for a class of uncertain linear system with polytopic uncertainties and filter gain variations. The sufficient condition of filter existence, the design method of robust non-fragile filter, and the measure of non-fragility in filter are presented via LMIs(Linear Matrix Inequality) technique. And the obtained sufficient condition can be represented as PLMIs(parameterized linear matrix inequalities) that is, coefficients of LMIs are functions of a parameter confined to a compact set. Since PLMIs generate infinite LMIs, we use relaxation technique, find the finite solution for robust non-fragile filter, and show that the resulting filter guarantees the asymptotic stability with parameter uncertainties and filter fragility. Finally, a numerical example will be shown.

Principal Components Logistic Regression based on Robust Estimation (로버스트추정에 바탕을 둔 주성분로지스틱회귀)

  • Kim, Bu-Yong;Kahng, Myung-Wook;Jang, Hea-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.531-539
    • /
    • 2009
  • Logistic regression is widely used as a datamining technique for the customer relationship management. The maximum likelihood estimator has highly inflated variance when multicollinearity exists among the regressors, and it is not robust against outliers. Thus we propose the robust principal components logistic regression to deal with both multicollinearity and outlier problem. A procedure is suggested for the selection of principal components, which is based on the condition index. When a condition index is larger than the cutoff value obtained from the model constructed on the basis of the conjoint analysis, the corresponding principal component is removed from the logistic model. In addition, we employ an algorithm for the robust estimation, which strives to dampen the effect of outliers by applying the appropriate weights and factors to the leverage points and vertical outliers identified by the V-mask type criterion. The Monte Carlo simulation results indicate that the proposed procedure yields higher rate of correct classification than the existing method.

ROBUST AND ACCURATE METHOD FOR THE BLACK-SCHOLES EQUATIONS WITH PAYOFF-CONSISTENT EXTRAPOLATION

  • CHOI, YONGHO;JEONG, DARAE;KIM, JUNSEOK;KIM, YOUNG ROCK;LEE, SEUNGGYU;SEO, SEUNGSUK;YOO, MINHYUN
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.297-311
    • /
    • 2015
  • We present a robust and accurate boundary condition for pricing financial options that is a hybrid combination of the payoff-consistent extrapolation and the Dirichlet boundary conditions. The payoff-consistent extrapolation is an extrapolation which is based on the payoff profile. We apply the new hybrid boundary condition to the multi-dimensional Black-Scholes equations with a high correlation. Correlation terms in mixed derivatives make it more difficult to get stable numerical solutions. However, the proposed new boundary treatments guarantee the stability of the numerical solution with high correlation. To verify the excellence of the new boundary condition, we have several numerical tests such as higher dimensional problem and exotic option with nonlinear payoff. The numerical results demonstrate the robustness and accuracy of the proposed numerical scheme.

Robust $L_2-L_{\infty}$ Filter Design for Uncertain Time-Delay Systems via a Parameter-Dependent Lyapunov Function Approach (파라미터에 종속적인 리아푸노프 함수 기법에 의한 불확실 시간지연 시스템을 위한 강인한 $L_2-L_{\infty}$ 필터 설계)

  • Choi, Hyoun-Chul;Jung, Jin-Woo;Shim, Hyung-Bo;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.177-178
    • /
    • 2008
  • An LMI-based method for robust $L_2-L_{\infty}$ filter design is proposed for poly topic uncertain time-delay systems. By using the Projection Lemma and a suitable linearizing transformation, a strict LMI condition for $L_2-L_{\infty}$ filter design is obtained, which does not involve any iterations for design-parameter search, any couplings between the Lyapunov and system matrices, nor any system-dependent filter parameterization. Therefore, the proposed condition enables one to easily adopt, with help of efficient numerical solvers, a parameter-dependent Lyapunov function approach for reducing conservatism, and to design both robust and parameter-dependent filters for uncertain and parameter-dependent time-delay systems, respectively.

  • PDF

Taguchi-based robust design for the footwear outsole pelletizing machine cutter (다구찌 방법을 이용한 신발 아웃솔 펠레타이징 기계 절단부의 강건설계)

  • Kwon, Oh-Hun;Koo, Pyung-Hoi;Kwon, Hyuck-Moo
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.4
    • /
    • pp.935-949
    • /
    • 2016
  • Purpose: This study attempts to find out the optimum condition of the rotary cutter making pellet in the footwear outsole process. The pellets are used in the process of outsole rubber fabrication to reduce cycle time and save raw material. Methods: Computer simulations are used to analyze the maximum stress in the rotary cutter after designing a variety of cutter shapes. Taguchi method is used to identify the robust condition of the cutter. In $L_{18}$ orthogonal array, the control factors such as knife width, twisted angle, number of knives, diameter, knife depth and supported angle are considered and noise factors like assembly tolerance and amount of antifriction are allocated. Results: It is found that the most important factors to reduce maximum stress in the cutter are supported angle and diameter. Using Tacuchi's results, we can reduce 70% cycle time and 9% raw material compared to the traditional method using cutting die. Conclusion: When designing the rotary cutter, the best conditions are the diameter at its maximum allowable value and supported angle in the boundary of machine inner space.

Reliability Based on Robust Design Optimization of Tension Mooring Unit Considered Marine Circumstance Condition (해양 환경조건을 고려한 긴장계류장치의 신뢰성 기반 강건설계 최적화)

  • Oh, Young-Cheol;Kang, Byoung-Mo;Ko, Jae-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.120-121
    • /
    • 2013
  • Recently, our country is to be diversification a leisure activity and tourism form by income level rise and traffic circumstance improvement. But Basic facilities expropriated these leisure activities have built an insufficient condition. Also, Building a facility, Introduced tools and materials import the whole quantity. Therefore, In this paper, it builds a tension mooring unit to use EPDM and Kevlar R29 and it develops a domestic marine circumstance through reliability based on robust design. It contributes to marine leisure culture activation and industry development.

  • PDF

Statistical Fracture Analysis of Turbine blade (터어빈 블레이드의 통계적 파괴 분석)

  • Choi, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.101-106
    • /
    • 2006
  • The optimum design of turbine blade at minimized fatigue life can be derived by the statistical fatigue analysis in this study, The optimum value of positions in the axes of X and Y at turbine blade can be found by design of experiments on the condition that the value of fillet radius is fixed to minimize the fatigue life. The degree of uncertainty about process at the factors in the axes of X and Y can be calculated by six sigma analysis. The optimum value of fillet radius is determined by utilizing the robust design at uncertain condition. It is concluded that maximum von Mises stress can decreased by 20% and the fatigue life can be double.

  • PDF

On Robustness of Linear Quadratic State Feedback Regulators for Infinite Dimensional systems (무한차원 시스템을 위한 선형 이차상태 궤한 제어기의 견인성에 관한 연구)

  • Seo, Jin-Heon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.7
    • /
    • pp.490-497
    • /
    • 1988
  • This paper is concerned with the robust stability of linear quadratic state feedback regulators for infinite dimensional systems in the presence of system uncertainties Several robustness results ensuring the asymptoitc stability and exponential stability of the perturbed closed loop system are derived for a class of nonlinear perturbations of the system and input operators satisfying the matching condition. For the case where the input space is finite dimensional, some robust properties of the state feedback regulator designed on the basis of the linear quadratic regulator for finite dimensional unstable modes are also discussed seperately.

  • PDF