• Title/Summary/Keyword: robust adaptive fuzzy control

Search Result 106, Processing Time 0.031 seconds

Nonlinear Friction Control Using the Robust Friction State Observer and Recurrent Fuzzy Neural Network Estimator (강인한 마찰 상태 관측기와 순환형 퍼지신경망 관측기를 이용한 비선형 마찰제어)

  • Han, Seong-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.90-102
    • /
    • 2009
  • In this paper, a tracking control problem for a mechanical servo system with nonlinear dynamic friction is treated. The nonlinear friction model contains directly immeasurable friction state and the uncertainty caused by incomplete modeling and variations of its parameter. In order to provide the efficient solution to these control problems, we propose a hybrid control scheme, which consists of a robust friction state observer, a RFNN estimator and an approximation error estimator with sliding mode control. A sliding mode controller and a robust friction state observer is firstly designed to estimate the unknown infernal state of the LuGre friction model. Next, a RFNN estimator is introduced to approximate the unknown lumped friction uncertainty. Finally, an adaptive approximation error estimator is designed to compensate the approximation error of the RFNN estimator. Some simulations and experiments on the mechanical servo system composed of ball-screw and DC servo motor are presented. Results demonstrate the remarkable performance of the proposed control scheme.

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

The Characteristic of Control Response of BLDC using a Fuzzy PI Controller (퍼지 PI 제어기를 사용한 BLDC 제어 응답특성)

  • Yoon, Yong-Ho;Kim, Jae-Moon;Kim, Duk-Heon;Won, Chung-Yuen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1978-1983
    • /
    • 2011
  • BLDC motor is used in a wide variety of industrial and servo applications. Its features and advantages mainly consist in high value of torque/inertia ratio, high efficiency with speed range and high dynamic performance. This paper deals with the speed control of a trapezoidal type brushless DC motor using Fuzzy PI controller. The conventional PI controller has been widely used in industrial applications. If we select a optimal PI control gain, the PI controller shows very good control performance. But it is very difficult to find the optimal PI control gain. Fuzzy control does not need any model of plant and is basically adaptive and gives robust performance for plant parameter variation. Therefore the combinations of conventional PI controller and fuzzy controller seem to be very effective. This paper deals with PI controller with 4-rule based fuzzy controller. The proposed fuzzy PI controller increases the control performance of the conventional PI controller. Simulation and experimental results show that fuzzy PI controller has a good robustness regarding the improper tuned PI controller.

Design of an Adaptive Fuzzy Sliding Mode Position Controller (새로운 적응 퍼지 슬라이딩모드를 가지는 제어기 설계)

  • 박광현;김혜경;이대식
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.4
    • /
    • pp.66-73
    • /
    • 2002
  • Although the general sliding mode control has the robust property, bounds on the disturbances and parameter variations are known to the designer of the system control. But sometimes these bounds may not be easily obtained. However, fuzzy control provides an effective way to design the controller of the system with the disturbances and parameter variations. Therefore, combination of the best feature of fuzzy control and sliding mode control is considered. When using the conventional VSC, generally the reaching phase problem occurs, which cause the system response to be sensitive to parameter variations and external disturbances. In order to overcome these problems, an adaptive fuzzy VSC with sliding surface eliminating reaching phase is proposed. The validity of the proposed scheme is shown by results of experiments for the BLDC motor.

  • PDF

AFLC Development for Robust Control of Induction Dirve (유도전동기 드라이브의 강인성 제어를 위한 AFLC 개발)

  • Kim, Jong-Kwan;Choi, Jung-Sik;Ko, Jae-Sub;Lee, Jung-Ho;Park, Byung-Sang;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.727-728
    • /
    • 2006
  • This paper is proposed robust control based on the vector controlled induction motor drive with adaptive fuzzy learning control(AFLC). The fuzzy logic principle is first utilized for the control rotor speed. AFLC scheme is then proposed in which the adaptation mechanism is executed using fuzzy logic. Also, this paper is proposed estimation of speed of induction motor using ANN Controller. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. This paper is proposed the analysis results to verify the effectiveness of the new method.

  • PDF

Design of an Adaptive Fuzzy VSC for BLDC Motor Position Control (적응 퍼지 가변구조 알고리듬을 사용한 전동기 위치제어기 설계)

  • Park, Kwang-Hyun;Lee, Hun;Lee, Dae-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.63-69
    • /
    • 2003
  • The main property of VSC is that the system response is robust and insensitive to parameter variations and external disturbances in the sliding mode if their bounds are known to the designer of the system control. But sometimes these bounds may not be easily obtained. However, fuzzy control provides an effective way to design the controller of the system with the disturbances and parameter variations. Therefore, combination of the best feature of fuzzy control and sliding mode control is considered. When using the conventional VSC, generally the reaching phase problem occurs, which cause the system response to be sensitive to parameter variations and external disturbances. In order to overcome these problems, a robust position control method of the BLDC motor using an adaptive fuzzy VSC without leaching phase is presented.

Load Frequency Control of Multi-area Power System using Auto-tuning Neuro-Fuzzy Controller (자기조정 뉴로-퍼지제어기를 이용한 다지역 전력시스템의 부하주파수 제어)

  • Jeong, Hyeong-Hwan;Kim, Sang-Hyo;Ju, Seok-Min;Heo, Dong-Ryeol;Lee, Gwon-Sun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.95-106
    • /
    • 2000
  • The load frequency control of power system is one of important subjects in view of system operation and control. That is even though the rapid load disturbances were applied to the given power system, the stable and reliable power should be supplied to the users, converging unconditionally and rapidly the frequency deviations and the tie-line power flow one on each area into allowable boundary limits. Nonetheless of such needs, if the internal parameter perturbation and the sudden load variation were given, the unstable phenomenal of power system can be often brought out because of the large frequency deviation and the unsuppressible power line one. Therefore, it is desirable to design the robust neuro-fuzzy controller which can stabilize effectively the given power system as soon as possible. In this paper the robust neuro-fuzzy controller was proposed and applied to control of load frequency over multi-area power system. The architecture and algorithm of a designed NFC(Neuro-Fuzzy Controller) were consist of fuzzy controller and neural network for auto tuning of fuzzy controller. The adaptively learned antecedent and consequent parameters of membership functions in fuzzy controller were acquired from the steepest gradient method for error-back propagation algorithm. The performances of the resultant NFC, that is, the steady-state deviations of frequency and tie-line power flow and the related dynamics, were investigated and analyzed in detail by being applied to the load frequency control of multi-area power system, when the perturbations of predetermined internal parameters. Through the simulation results tried variously in this paper for disturbances of internal parameters and external stepwise load stepwise load changes, the superiorities of the proposed NFC in robustness and adaptive rapidity to the conventional controllers were proved.

  • PDF

A Adaptive and Fuzzy control of Inspection robot for Underground Pipes (지하매설파이프 검사로봇의 적응퍼지 위치 제어)

  • Kim, Do-Woo;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.670-673
    • /
    • 1999
  • In this paper, we present a robust motion controller based on Adaptive-Fuzzy technique is proposed that multifunctional vehicle(MVR) for two DOF mobile robot can perform detailed inspection of physical conditions of sewage pipes as well as can effectively repair the damaged portions of the inner walls. The main difficulties in controlling this multifunctional robot vehicles lie in the fact that vehicles usually have three degrees of freedom in position and orientation in spite of having only two degrees of freedom for motion control in tracking mode. Decomposition of error between the reference posture and the current posture makes control of speed and steering possible. The Gyro compass part and Inclonometer of the robot is configured in order to realize position of robot. The proposed Adaptive-Fuzzy motion controller has two main characteristics: The one guarantees that the MVR follows the reference trajectory; the other one compensates the dynamics of the MVR. Simulation results are provided to validate the proposed controller. Experiments have been used to verify the effectiveness and robustness of the motion controller.

  • PDF

Direct Torque Control of Squirrel Cage Typed Induction Motor Using Fuzzy Controller (퍼지제어기를 이용한 농형 유도 전동기의 직접 토크제어)

  • Han, Sang-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.122-129
    • /
    • 2008
  • The direct torque control method of an inverter fed squirrel cage typed induction motor using fuzzy logic controller has been proposed. This method is suitable for the traction which requires a fast torque response during the star-up and step change. The fuzzy control algorithm based upon the control principles of conventional DSC(Direct Self Controller) is developed. The fuzzy algorithm is tarried out by defuzzification strategy of the fuzzy output extracted from the possibility distribution of an inferred fuzzy control rule. The flux and torque of an induction motor are estimated by the dynamic model of the rotor flux field-oriented scheme which has decoupling characteristics and excellent dynamic response over a wide speed range. The proposed controller shows a good dynamic response. Moreover, since the fuzzy controller possesses highly adaptive capability, the performance of fuzzy controller is quite robust and insensitive to the motor parameters and change of operation conditions.