• Title/Summary/Keyword: robust H_$\infty$control

Search Result 424, Processing Time 0.033 seconds

Robust Hcontrol applied on a fixed wing unmanned aerial vehicle

  • Uyulan, Caglar;Yavuz, Mustafa Tolga
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.371-389
    • /
    • 2019
  • The implementation of a robust $H_{\infty}$ Control, which is numerically efficient for uncertain nonlinear dynamics, on longitudinal and lateral autopilots is realised for a quarter scale Piper J3-Cub model accepted as an unmanned aerial vehicle (UAV) under the condition of sensor noise and disturbance effects. The stability and control coefficients of the UAV are evaluated through XFLR5 software, which utilises a vortex lattice method at a predefined flight condition. After that, the longitudinal trim point is computed, and the linearization process is performed at this trim point. The "${\mu}$-Synthesis"-based robust $H_{\infty}$ control algorithm for roll, pitch and yaw displacement autopilots are developed for both longitudinal and lateral linearised nonlinear dynamics. Controller performances, closed-loop frequency responses, nominal and perturbed system responses are obtained under the conditions of disturbance and sensor noise. The simulation results indicate that the proposed control scheme achieves robust performance and guarantees stability under exogenous disturbance and measurement noise effects and model uncertainty.

Design of Robust $H^{\infty}$ Controller for Water Level Control of Steam Generator (증기발생기 수위 제어를 위한 견실$H^{\infty}$ 제어기 설계)

  • 서성환;조희수박홍배
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.223-226
    • /
    • 1998
  • The control objective of steam generator water level in the secondary circuit of a nuclear power plant is to regulate the water level at the desired set point. The dynamics of steam generators is non-linear in nature. The task of modelling such plant is very difficult and especially so when plant operating conditions change frequently. In these reasons, conventional PI gains over all pover range will not work efficiently and a manual control is generally used in low power operation. Therefore the robust H$\infty$ controller design method should be required. In this paper, we design the robust H$\infty$ controller for water level control of steam generator using a mixed H$\infty$ optimization with model-matching method. Firstly we choose the desired model that has good disturbance rejection performance. Secondly we design a stabilizing controller to keep the model-matching error small and also provide sufficiently large stability margin against additive perturbations of the nominal plant.

  • PDF

Design of a Mixed $H_2/H_{\infty}$ PID Controller for Speed Control of Brushless DC Motor by Genetic Algorithm (유전 알고리즘에 의한 브러시리스 DC모터의 속도 제어용 혼합 $H_2/H_{\infty}$ PID제어기 설계)

  • Duy Vo Hoang;Phuong Nguyen Thanh;Kim Hak-Kyeong;Kim Sang-Bong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.77-78
    • /
    • 2006
  • A mixed method between $H_2\;and\;H_{\infty}$ control are widely applied to systems which has parameter perturbation and uncertain model to obtain an optimal robust controller. Brushless Direct Current (BLDC) motors are widely used for high performance control applications. Conventional PID controller only provides satisfactory performance for set-point regulation. However, with the presence of nonlinearities, uncertainties and perturbations in the system, conventional PID is not sufficient to achieve an optimal robust controller. This paper presents an approach to ease designing a Mixed $H_2/H_{\infty}$ PID controller for controlling speed of Brushless DC motors and the genetic algorithm is used to solve the optimized problems. Numerical results are shown to prove that the performance in the proposed controller is better than that in the optimal PID controller using LQR approach.

  • PDF

Comparison of Control Performance in Electro.hydraulic Servo Systems (전기.유압 서보 시스템의 제어성능 비교)

  • Kim, D.T.;Park, K.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.2
    • /
    • pp.14-20
    • /
    • 2006
  • A controller design procedure for an electro-hydraulic positioning systems has been developed using $H{\infty}$ control. The generalized plant models and weighting function for multiplicative uncertainty modelling error was presented along with $H{\infty}$ controller designs in order to investigate the robust stability and performance. Both disturbance rejection and command tracking performances were improved with the $H{\infty}$ controller, and the better uniformity of time response is achieved across wide range of operating conditions than the PID, LQR and LQG control scheme. The multiplicative uncertainty case was specifically suited for the design of an electro-hydraulic positioning control systems using $H{\infty}$ control.

  • PDF

Robust Controller Design for a Stabilized Head Mirror

  • Keh, Joong-Eup;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.78-86
    • /
    • 2002
  • In this paper, LMI (Linear Matrix Inequality) based on H$\_$$\infty$/ controller for a lire of sight (LOS) stabilization system. It shows that the proposed controller has more excellent stabilization performance than that of the conventional PI-Lead controller. An H$\_$$\infty$/ control has been also applied to the system for reducing modeling errors and the settling time of the system. The LMI-based H$\_$$\infty$/ controller design is more practical in view of reducing a run-time than Riccati-based H$\_$$\infty$/ controller. This H$\_$$\infty$/ controller is available not only to decrease the gain in PI-Lead control, but also to compensate the identifications for the various uncertain parameters. Therefore, this paper, shows that the proposed LMI-based H$\_$$\infty$/ controller had good disturbance attenuation and reference input tracking performance compared with the control performance of the conventional controller under any real disturbances.

Robust Control System Design for an AMB by $H_{\infty}$ Controller ($H_{\infty}$ 제어기에 의한 능동 자기 베어링 시스템의 강인한 제어계 설계)

  • Chang, Y.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.48-53
    • /
    • 2003
  • This paper deals with the control of a horizontally placed flexible rotor levitated by electromagnets in a multi-input/multi-output (MIMO) active magnetic bearing(AMB) system. AMB is a kind of novel high performance bearing which can suspend the rotor by magnetic force. Its contact-free manner between the rotor and stator results in it being able to operate under much higher speed than conventional rolling bearings with relatively low power losses, as well as being environmental-friendly technology for AMB system having no wear and no lubrication requirements. In this MIMO AMB system, the rotor is a complex mechanical system, it not only has rigid body characteristics such as translational and slope motion but also bends as a flexible body. Reduced order nominal model is computed by consideration of the first 3 mode shapes of rotor dynamics. Then, the $H_{\infty}$ control strategy is applied to get robust controller. Such robustness of the control system as the ability of disturbance rejection and modeling error is guaranteed by using $H_{\infty}$ control strategy. Simulation results show the validation of the designed control system and the modeling method to the rotor.

  • PDF

Multivariable $H_{\infty}$ disturbance rejection control for tandem cold mills (연속 냉간 압연기의 다변수 $H_{\infty}$ 외란제거 제어)

  • 김승수;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.391-394
    • /
    • 1997
  • A H$_{\infty}$ control techniques with roll eccentricity filter is proposed to alleviate the effect of entry thickness variation and roll eccentricity occurred in rolling stand itself of tandem cold mills. A robust controller to the disturbances is designed using H$_{\infty}$ control techniques, which can reflect the input direction of disturbances and knowledge of disturbance spectrum in the frequency domain. And, non-standard H$_{\infty}$ control problem caused by selection of weight function having poles on j.omega. axis is discussed. The evaluation for the resultant controller composed by H$_{\infty}$ synthesis is done through computer simulations. The effectiveness of the proposed method is compared to those of the conventional LQ synthesis method and a feedforward controller against roll eccentricity, which was already studied.ied.

  • PDF

ROBUST $H_{\infty}$ FIR SAMPLED-DATA FILTERING

  • Ryu, Hee-Seob;Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.521-521
    • /
    • 2000
  • This paper investigates the problem of robust H$_{\infty}$ filter with FIR(Finite Impulse Response) structure for linear continuous time-varying systems with sampled-data measurements. It is assumed that the system is subject to real time-varying uncertainty which is represented by the state-space model having parameter uncertainty. The robust H$_{\infty}$ FIR filter is proposed for the continuous-time linear parameter uncertain systems. It is also derived from the equivalence relationship between the robust linear H$_{\infty}$ FIR filter and the robust linear H$_{\infty}$ filter with sampled-data measurements.

  • PDF

Stability Condition of Robust and Non-fragile $H^{\infty}$ Hovering Control with Real-time Tuning Available Fuzzy Compensator

  • Kim, Joon-Ki;Lim, Do-Hyung;Kim, Won-Ki;Kang, Soon-Ju;Park, Hong-Bae
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.364-371
    • /
    • 2007
  • In this paper, we describe the synthesis of robust and non-fragile $H^{\infty}$ state feedback controllers for linear systems with affine parameter uncertainties, as well as a static state feedback controller with poly topic uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile $H^{\infty}$ static state feedback controller with fuzzy compensator, and the region of controllers that satisfies non-fragility are presented. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of controller gain variations within a resulted polytopic region.

New Robust $H_{\infty}$ Performance Condition for Uncertain Discrete-Time Systems

  • Zhai, Guisheng;Lin, Hai;Kim, Young-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.322-326
    • /
    • 2003
  • In this paper, we establish a new robust $H_{\infty}$ performance condition for uncertain discrete-time systems with convex polytopic uncertainties. We express the condition as a set of linear matrix inequalities (LMIs), which are used to check stability and $H_{\infty}$ disturbance attenuation level by a parameter-dependent Lyapunov matrix. We show that the new condition provides less conservative result than the existing ones which use single Lyapunov matrix. We also show that the robust $H_{\infty}$ state feedback design problem for such uncertain discrete-time systems can be easily dealt with using the approach. The key point in this paper is to propose a kind of decoupling between the Lyapunov matrix and the system matrices in the parameter-dependent matrix inequality by introducing one new matrix variable.

  • PDF