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Stability Condition of Robust and Non-fragile H” Hovering Control
with Real-time Tuning Available Fuzzy Compensator

Joon Ki Kim, Do Hyung Lim, Won Ki Kim, Soon Ju Kang, and Hong Bae Park

Abstract: In this paper, we describe the synthesis of robust and non-fragile H” state feedback
controllers for linear systems with affine parameter uncertainties, as well as a static state
feedback controller with polytopic uncertainty. The sufficient condition of controller existence,
the design method of robust and non-fragile H” static state feedback controller with fuzzy
compensator, and the region of controllers that satisfies non-fragility are presented. We show that
the resulting controller guarantees the asymptotic stability and disturbance attenuation of the
closed loop system in spite of controller gain variations within a resulted polytopic region.

Keywords: Parameterized LMI, relaxation technique, robust and non-fragile H* control.

1. INTRODUCTION

Most plants in the industry have severe nonlinearity
and uncertainties. Thus, they post additional
difficulties to the control theory of general nonlinear
systems and the design of their controllers. It is
generally known that feedback systems designed for
robustness with respect to plant parameters, or for
optimization of a single performance measure, may
require very accurate controllers [1]. However, in
practice, controllers do have a certain degree of
variation due to finite word length and round-off
errors in digital systems, as well as the imprecision
inherent in analog systems and the need for additional
tuning of parameters in the final controller. Therefore,
it is necessary that any controller should be able to
tolerate some uncertainty in the controller as well as
in the plant [1-9].

The control of a helicopter is more difficult than the
control of a fixed airfoil aircraft. The difficulties that
arise in the control of a helicopter can be broadly
classified under three categories: nonlinearity,
uncertainty, and instability. The control of a helicopter,
therefore, represents a challenge to any method of
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control system design. Helicopters are nonlinear,
multi-variable, and have coupled systems. The
question of how to control different nonlinear
variables to achieve desirable performance cannot be
answered by using a conventional approach. To
preserve stability and performance in the presence of
helicopter model uncertainties and exogenous
disturbances, robust control techniques such as H, H”,
and p-analysis are useful tools to meet the control
requirements. Cho er al. [10] proposed a robust and
non-fragile H” controller design method for uncertain
systems. However, helicopters have severe
nonlinearity and uncertainties. Hence, it has need of a
compensator for nonlinearity.

In this paper, we propose a robust and non-fragile
H” controller design method with real-time tuning
available fuzzy compensator. Also the sufficient
condition of controller existence, the design method
of robust and non-fragile H” static state feedback
controller, and the region of controllers that satisfies
non-fragility are presented. The sufficient condition is
presented using PLMIs, that is, LMIs whose
coefficients are functions of a parameter confined to a
compact set. However, in contrast to LMIs, PLMI
feasibility problems involve infinitely many more
LMIs, hence are inherently difficult to solve
numerically. Therefore PLMIs are transformed into
finitely many LMI problems using relaxation
techniques [11,12].

For practical control design, a simple fuzzy control
design with guaranteed control performance is more
appealing for uncertain nonlinear systems. In this
work, we use fuzzy logic controllers of Mamdani type
to compensate the nonlinearity. This type of controller
has a heuristic nature, which reflects the experience of
a human pilot.

The paper is organized as follows. The definition of
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PLMI and basic lemma are described in Section 2
while Section 3 presents the control structure. Finally,
Section 5 discusses simulation results for the
helicopter hovering problem.

2. PRELIMINARIES

We consider parameterized LMIs (PLMIs), that is,
LMIs depending on a parameter 6 evoloving in a
compact set. The parameter 6 can designate
parameter uncertainties or system operations but
virtually appears. In this case, a particular emphasis is
placed on PLMIs of the form

L
My(2)+ D M (2)+ 2 6:6,M;(2)<0, (1)
i=1 I<i<jsL

where z is the decision variable, M,(z), M;(z)

are affine symmetric matrix-valued functions of z,
and 6 is a parameter confined to either the polytope

6T ={0=(6,6,,.6.):

L : @)
Zizlei =1,6,20,i=12,,L}
or the parameter hyper-rectangle
eer:zaﬁ; a,IBEERL’
o €)

az0,5>0,20,5>0,i=12,-,L,

where «@; and f; are elements of vector «, # each

other.

However, PLMI feasibility problems involve an
infinite amount of LMIs according to the variations of
parameters, hence are very difficult to solve
numerically. Computational efforts for locating
feasible points are expected to be much greater than
those of LMlIs. In this paper, we use relaxation
techniques where PLMIs are replaced by a finite
number of LMIs. Such approaches are potentially
conservative but often provide practically exploitable
solutions of difficult problems with a reasonable
computational effort.

Lemma 1 [11]: The PLMI problem (1) and (2) has
a solution z whenever the following quadratic
conditions hold,

L
xTMo (2)x+ Z HixTM,- (z)x

i=1

+ z max {—xTM,'j (z)x- {

Isi<j<L

6’,.2 + 19]2

6+, r 0] +6;
5 L 4+0.125 |, x" My(2)x- 5 <0,

GevertT. 4

The latter conditions are readily rewritten as LMIs
and can be easily expressed as an LMI feasibility
problem. The third term is a tight upper bound of

6,0,x" M;(z)x with 6;+6;<1. Therefore, if the
set T is alternatively defined as
fel={0=(6,6,,.6):

&)
Z,-Lzleﬁu,ﬁi >0,i=12,,L},

with 0>1, one can use the change of variable
6. =6; /v to recover the case ; + [57] <1. Analogously,

applying the change of variable 6;+6; <1 to the

constraint (3) yields the relation 8 [O 1] L

3. CONTROLLER STRUCTURE

Consider a linear time-varying delayed system with
affine parameter uncertainties

(1) = A1, )x(O) + A4 (1,5)x(t — (1))
+ By (1, H)w(t) + By (1, S)u(1), (6)
2(1) = C(1, $)x(),

where x(¢) e R”is the state, u(f)eR™is the control
input, w(f)e R is the disturbance input, and

z(t)eRP is the controlled output. The system

A, S), 43(,8), B(t,5), By(1,5), and
C(t, &) are supposed to have appropriate dimension

and the
uncertainties:

matrices

following  time-varying  structured

AL E) =4y + 2 EOA,
A(1,6) =dgg + 31 EOAg,
Bi(t,&) =B+, EDBy, (7
By(t,) =By + 3 &(DBy;,
Ct,&) =Cp +2,r,&OC,

Also, the time-delay is time-varying and satisfies
0<r(f)<h #({)<d<l. (8)

Although one finds the robust H™ state feedback
controller u(t)=Kx(¢), the actual controller with

additive perturbations implemented is assumed as

u(t)=[Ko + AK()]x(1) = K(1,£)x(r), ©)
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where K(#,£) is the region of controller variations,

and K; is the vertices of polytope. And the region of
controller variations is rewritten as

K(t.E) =Ko+ Y1 &OK(0), K; =K, - Ky, o
£@020, Y EW=1, =12, L

Here, the value of Ei indicates the measure of

non-fragility against controller gain variations.

System (6) without time-delay is transformed to the
closed loop system with fuzzy compensator of affine
form as

() = [A(t, &)+ diag{ Aug (), Aug, (1), B (1))

+5,(0, ){Ko + XL, OK | |50
(11)
Here,
At = Ao+ Y E(D4;
+diag{ Aug (), Au g (1), duy (0 (12)
= A(1,%).

Theorem 1: Consider the linear parameter
uncertain system (6) without time-delay. If there exists
the positive definite matrix (, matrices Y, and

Y, (i=1, 2,---, L ) such that

¥ By ocle e
By (1, &) ~-pl 0 <0,

C@t, &0 0 -1
W =04" (1,8 + A1, 50+ By(t,E)Yy + Yy By (1,€)
+ 2 LEO] B oY+ Y BT (109 ]
(13)
Lyapunov functional

s,
",
Y
Y
)

v,
“

»

Fig. 1. The basic concept of non-fragile control.

then the closed loop system (11) is asymptotically
stable with disturbance attenuation » and non-

fragility. Here, some variables are defined as follows:
0=P", p=y% Y, =K,0, Y, =K,0. (14)

Proof: When Lyapunov derivative corresponding to
the closed loop system with Lyapunov functional
V(x(t),t)zxr(t)Px(t) is negative, suppose that the
disturbance input is zero for all time. The closed loop
system is asymptotically stable.

Under zero initial condition, let us introduce

J= j:’ 127 (1) 2(t) - *w (0)w(t)] dt. (15)

Then performance measure (15) for any nonzero

w(t)e L, [0 «),

J= [T 020 - W 0w
’ (16)
+ % (T (OPx(1)} 1dt = xT (00) P x(c0),

then robust H” condition

T T B PBl(t’é:) x(t)
o (ﬂ{Bf wor 21 |win) >

Z=A"(t,E)P+ PA(1,E) + CT (1,6)C(1, &)

+ PBy(1,E)K (1,8) + K (1,)T B (¢,E)P
(17)

implies || z(¢) “2 Sy” w(t) “2 for all nonzero

disturbances. Also, the inequality (17) can be
transformed to (13) using Schur complements and
change variables in (14). O

The proposed sufficient condition of existence for
robust and non-fragile H” static feedback controller
(11) is presented using PLMIs, that is LMIs whose
coefficients are functions of a parameter confined to a
compact set. However, in contrast to LMIs, PLMI
feasibility problems involve an infinite number of
LMIs, hence are transformed into finitely many LMI
problems using relaxation techniques.

Theorem 2: The linear parameter uncertain system
(6) 1is asymptotically stable with disturbance
attenuation » and non-fragility whenever there exist

matrices Yy, Y;(i=1,2,---,L), positive definite
matrix , and positive constant p such that
L L
T T T
X My(2)x+ Y &x' My(2)x+ Y &x N (2)x
i=1 j=1

2 2
+ z max {—xTM,-j (z)x- [@

I<i<j<L
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2 2
L+ £ ~ 4 £
—é—§’—+0.125j, x" My (z)x- S tej }<0
2 2

‘v’“x”:l, (é:i, §j)evert r

(18)
holds for z, M;(z), N j(z), and M;(z) defined

below:

—Q%T+%Q+Bm%+%nﬁf By 0Cf
My(2)= By -pI 0
G0 0 I

L

FQZI'T + 4,0+ B, Y, + ¥ B BT oc]

M,(z) = B, 0o 0 |
] C0 0 0
[ ByY; +¥ By’ 0 0
N;(2)= 0 0 04,
0 00
P (19)
ByY;+Y[ By 0 0
My(z)= 0 00l
0 00

Proof: Using the modified PLMI form and
applying lemma 1, the proof is easily obtained. 0
Remark 1: The inequality (13) is converted to a
finite number of LMI problems in terms of O, p,

Yy, and Y (i=1,2,--,L)
technique of lemma 1. Therefore, the proposed robust
and non-fragile H” state feedback controller K, and

the region of controllers that satisfy non-fragility can
be calculated from IZ,- = Y,-Q_1 (i=1, 2,0, L ) after

determining the LMI solutions from (18). In addition,
the value of disturbance attenuation  can be obtained

by y=+/p in(12).

Because the controller implementation is subject to
imprecision inherent in analog-digital and digital-
analog conversion, finite word length, finite resolution
measuring instruments and round-off errors in
numerical computations, as well as a useful design
procedure should generate a controller which also has
sufficient space for readjustment of its coefficients.
The inequality (18) provides a sufficient condition for
the existence of the robust controller under additive
control gain perturbations of the form (10).

using the relaxation

Remark 2: The proposed robust A controller is
not fragile under additive control gain perturbations
and less conservative than controller design

algorithms regarding control gain perturbations as
system  uncertainties. Because control  gain
perturbations should be independent of system
uncertainties, the proposed sufficient condition is /ess
conservative than a conventional robust H” controller
design algorithm for a linear uncertain system.

Corollary 1: Consider the linear system with affine
parameter uncertainties in (6) and the time-varying
delay (8). If there exist three positive-definite matrices
P, Xj, and X, such that

[ hA (6P dyA (t,E)P
hPAL (1,€) - X, 0
d, PAY (1,€) 0 -X,
PBl (1,&) 0 0
C(t,&) 0 0
B(LEOP CT(1,8)]
0 0
0 0 <0,
~-pl 0
0 -1

=47 (1,E)P + PA(L,E) + AL (1, E)P + AL (1,E)P 0)
+ KT (1,6)B] (1,E)P + PBy(1,E)K (1,5),

then the closed-loop system is asymptotically delay-
dependent stable with disturbance attenuation y and

non-fragility, where s =vh? +1 and d, = h/(1-d).

Proof: Using the modified PLMI form and
applying Lemma 1, the PLMI (20) are transformed
into the LMI problems. 0

4. HELICOPTER DYNAMICS

Flying a helicopter is a complex control problem
[13], due to the multiple inputs and outputs which in
addition are partially coupled. A helicopter has a
nonlinear system, which is inherently unstable and
very sensitive to external disturbances such as wind
and ground effects.

Linearization is essential to derive simplified
working models, considering the inherent instability
under hover condition. Small scale helicopters have
very similar characteristics; therefore, it is beneficial
to derive a generalized linear model for such types of
helicopters, common to all controller designs.

The helicopter system can be considered as a
lumped model consisting of a main rotor, a tail rotor, a
horizontal stabilizer, a vertical stabilizer, and a
fuselage, which are denoted by the subscripts M, T, H,
V, and F, respectively.
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Top View

Fig. 2. Free body diagram of helicopter.

Then, we define that x,y, z, g, p, v, B;, and
4, are longitudinal, lateral, vertical, pitching, rolling,

yawing velocity, longitudinal cyclic pitch, and lateral
cyclic pitch, respectively. The force experienced by
the helicopter is the resultant force of the thrust
generated by the main and tail rotors, damping forces
from the horizontal and vertical stabilizer,
aerodynamic force due to fuselage, and gravitational
force. In hover or forward flight with slow velocity,
the velocity is so slow that we can ignore the drag
contributed from the horizontal, vertical stabilizers,
and fuselage. We derive the dynamic equation of the
helicopter.

In this work, the helicopter model used to simulate
the flight in hover position is an ERGOS50 helicopter
[14]. The general form used for the state matrix model
is shown by (21).

1er 1o 1
m Ox m oy m Op
10Y 1Y 1 Y
e | —— 0 g —
X m Ox m oy m Op
Y 0 0 1oz 4
V.4 m 0z
¢' 0 0 0 0 1
pllLoR 1R 1 o 1
ol | Inoe 1,00 1.0 I op
g 0 0 0 0 0
pl oM 1ow 1om 1 oM
I, & 1,8 I, & 1, o
o Lo 1oV 1oV
i 1, 00 I, 02 1,, op

R S
m Og
o J1or 1ov
m Og mor |[x]
0 0 o ||
z
0 0 0 ¢
0 L@_R L@_R p
I.0q I,0r ||g
0 1 0 q
o LoM 1ol
I, oqg I, or
o o L
1,, or |
1 1o 1]
m 06, moAd  moOB
1ov aer a1ar 1o
m 69M m 607' m aAl m aBl
1o 0 0 0
0 0 0 o |6
1k 1R 1R 1R 4
I, 00y 1,06, I.04 1,08 | B
0 0 0 0
oM 1AM 1M 1M
I1,,06y I, 06 1,04 I, 0B
Ty 1N
I,,06y I, 086, ]
@21

There are four control inputs (6, 0y, 4}, B;),

corresponding to the main rotor pitch angle, tail rotor
pitch angle, lateral cyclic pitch, and longitudinal
cyclic pitch.

5. SIMULATION RESULTS

Consider a linear system (6) with affine parameter
uncertainties satisfying

A, &) =Ag +&5O)- A +&(1)-A4,,
By(1,8) =By + &) By +&5(1)- Byy,

and parameters & (¢f) and &,(¢) satisfying

(22)

fer={£=(4. £):X1,60-1, 020109

Since the moment of inertia (/,1,,,/,,) was

acquired by measurement, it may have the uncertainty.
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Hence, we assume that the moment of inertia and the
total mass has the error of 10 percents and 5 percents,
respectively. Also, the mathematical modeling of a
helicopter has some error in linearization such as

sinf@=@ and «cos@=1. We assume that the
uncertainties are
sinf-0< Ay <@-sinf, -6<6<0,
—max{lcosg—l , cosa—ll} <Ay <0, 24)

~¢<4s94,

where 6 and ¢ are the pitch and roll angle,

respectively.

The robust and non-fragile H” state feedback gain
and vertex of perturbation satisfying non-fragility are
represented in (25) using Theorem 2.

10.3277
55.6685
—-299.8408
—-18.6963
2.1660
177.0386

0.1103
10.1645
-33.9123
—1.4399
—4.6973
-59.0670  3.8548
—135.1994 -9.6092 -27.2139
290.7262  20.6915  34.1174
-0.6764 -20.8111
5.8185 -26.8321
—2.0966 964131
3.0832 -38.1736
-1.2236 -2.6015
12.8395 96.3336
2.5501 -2.4807
~0.2748 31.0842
—22.2489
153.9468
48.4277
4.6866

8.0094
20.0893
1.5648
4.4261

0.5309

0.6306
10.1357
14.9696
-30.7624
0.8955
~2.9021
_17.6717
—4.7545
_0.6754 —2.4136
o 227172 —7.1312
7| 251597 10.8536
27301 —5.0618
~1.0757  4.1905

~4.1029 166.4240

3.5835 542444

~1.8894 —38.9025

~0.9919 —2.6082  0.0707

. 1100757 167581 14.2640
271.83054 5.6192 —2.4833
9.5374  0.5089  5.1360

0

~1.0102
3.2078
~0.7497
0.1908
¥ = 0.2646.

6.8802
-102.8227
77.1509
—-87.4895

~-1.1269
—-1.0740

2.5460
-0.3977

—-2.8333
89.2251
—4.2375
26.9150

(25)

This simulation shows that the vertices of hovering
controller polytope guarantee the asymptotic stability.
And the disturbance w(k) is defined by (26).

w(k) = {1’

if 2<t<5sec,

0, otherwise.

(26)

-y "
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Fig. 3. The hovering response of a helicopter for the
nominal controller Ky with fuzzy compensator.
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Fig. 4. The hovering response of a helicopter for the
actual controller with time-varying additive

perturbation K =K+ sin? 7 K+ cos> 1- 152.
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6. CONCLUSIONS

In this paper, we presented the robust and non-
fragile H” hovering controller design method for a
helicopter system with affine parameter uncertainties
and state feedback controller with polytopic
uncertainties. Also, the robust and non-fragile
hovering controller and the region of controllers
which satisfies non-fragility were calculated at the
same time using the PLMI approach.

Because the effects of the input membership
functions are not taken into account in the stability
conditions, the proposed controller design algorithm
allows the input of membership functions in real-time
tuning. Although the designed fuzzy rule is erroneous,
the proposed controller guarantees the stability of the
helicopter in flight.

In spite of the controller gain variations within the
resulted polytopic region and incorrect rules, the
obtained robust and non-fragile H” hovering
controller guaranteed the asymptotic stability and
disturbance attenuation from the closed loop system.
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