• Title/Summary/Keyword: robust H_$\infty$control

Search Result 424, Processing Time 0.031 seconds

Design of an LMI- Based H^{\infty} Servo Controller for Tandem Cold Mill (LMI 에 기초한 연속 냉간압연기의 H^{\infty} 서보 제어기 설계)

  • Kim, In-Soo;Hwang, I-Cheol;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 2000
  • In this paper, we design a H^\infty servo controller for gauge control of tandem cold mill. To improve the performance of the AGC(Aotomatic Gauge Control) system based on the Taylor linearized model of tandem cold mill, the H^\infty servo controller is designed to satisfy robust stability, disturbance attenuation and robust tracking properties. The H^\infty servo controller problem is modified as an usual H^\infty control problem, and the solvability condition of the H^\infty servo problem depends on the solvability of the modified H^\infty control problem. Since this modified problem does not satisfied standard assumptions for the H^\infty control problem, it is solved by an LMI(Linear Matrix Inequality) technique. Consequently, the comparison between the H^\infty servo controller and the existing PID/FF(FeedForward) controller shows the usefulness of this study.

  • PDF

Robust Servo System Design by $H_2/H_{\infty}$ Control - Application to Three Inertia Benchmark Problem- (혼합 $H_2/H_{\infty}$제어에 의한 강인한 서보시스템의 설계 -3관성 벤치마크문제의 해법 -)

  • Choe, Yeon-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.3
    • /
    • pp.148-156
    • /
    • 2005
  • The purpose of this paper is to propose an approach to design a robust servo controller based on the mixed $H_2/H_{\infty}$ theory, and confirm its validity by applying to a benchmark problem. First, the existing $H_{\infty}$ servo problem is modified to a structure for the mixed $H_2/H_{\infty}$ control problem by virtue of the internal model principle. By making use of proposed structure, we can divide specifications required in the robust servo system design into $H_2$ and $H_{\infty}$ performance criteria, respectively. It is shown that the proposed design approach is quite effective through an application to a three inertia benchmark problem.

  • PDF

Design of a robust $H_{\infty}$ controller with regional stability constraints for uncertain linear systems (불확실한 선형 시스템의 지역 안정 제한 조건을 가진 강인한 $H_{\infty}$제어기의 설계)

  • 이문노;문정호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.747-750
    • /
    • 1996
  • This paper considers the problem of robust H$_{\infty}$ control with regional stability constraints via output feedback to assure robust performance for uncertain linear systems. A robust H$_{\infty}$ control problem and the generalized Lyapunov theory are introduced for dealing with the problem, The output feedback H$_{\infty}$ controller makes the controlled outputs settle within a given bound and the control input not to be saturated. The regional stability constraints problem for uncertain systems can be reduced to the problem for the nominal systems by finding sufficient bounds of variations of the closed-loop poles due to modeling uncertainties. A controller design procedure is established using the Lagrange multiplier method. The controller design technique was illustrated on the track-following system of a optical disk drive.ve.

  • PDF

Tracking Performance Improvement of a Magnetic Levitation Based Fine Manipulator (자기부상식 미동 매니퓰레이터의 추종성능 향상)

  • Choi, Kee-Bong;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.58-65
    • /
    • 1999
  • A magnetic levitation system requires a robustness to overcome a dynamic instability due to disturbances. In this paper a robust controller for a magnetically levitated fine manipulator is presented. The proposed controller consists of following two parts: a model reference controller and an $H_{\infty}$ controller. First, the model reference control stabilizes the motion of the manipulator. Then, the motion of the manipulator follows that of the reference model. Second, the $H_{\infty}$ control minimizes errors generated from the model reference control due to noise and disturbance since the $H_{\infty}$ control is a kind of robust control. The experiments of position control and tracking control are carried out by use of the proposed controller under the conditions of free disturbances and forced disturbances. Also, the experiments using PID controller are carried out under the same conditions. The results from above two controllers are compared to investigate the control performances. As the results, it is observed that the proposed controller has similar position accuracy but better tracking performances comparing to the PID controller as well as good disturbance rejection effect due to the robust characteristics of the controller. In conclusion. it is verified that the proposed controller has the simple control structure, the good tracking performances and good disturbance rejection effect due to the robust characteristics of the controller.

  • PDF

$H_\infty$ and Time-Varying Sliding Mode Control of Underwater Vehicle (수중운동체의 $H_\infty$및 시변슬라이딩모드 제어)

  • 박철재;이만형;홍금식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.540-545
    • /
    • 1993
  • When modeling an underwater vehicle uncertainty arises in the presence of unsteady flow. It is difficult to include the uncertainty in the model and is therefore desirable to investigate robust controller design methods for the underwater vehicle. In the paper two robust control methods are applied for the underwater system. One is standard H$_{\infty}$ control and the other is time-varying sliding mode control with modified saturation function. Suboptimal design parameters for H$_{\infty}$ control and design parameters for time-varying switching surfaces are provided. Simulations and comparison are carried out.t.

  • PDF

Robust $H_{\infty}$ FIR Sampled-Date Filtering for Uncertain Time-Varying Systems with Unknown Nonlinearity

  • Ryu, Hee-Seob;Byung-Moon;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.83-88
    • /
    • 2001
  • The robust linear H(sub)$\infty$ FIR filter, which guarantees a prescribed H(sub)$\infty$ performance, is designed for continuous time-varying systems with unknown cone-bounded nonlinearity. The infinite horizon filtering for time-varying systems is systems is investigated in therms of two Riccati equations by the finite moving horizon.

  • PDF

Robust $H^{\infty}$ Performance Controller Design with Parameter Uncertainty and Unmodeled Dynamics (파라미터 불확실성 및 모델 불확실성에 대한 $H^{\infty}$ 견실성능 제어기 설계)

  • Lee, Kap-Rai;Oh, Do-Chang;Park, Hong-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 1997
  • The method of designing robust two degree of freedom(2 DOF) controllers for linear systems with parameter uncertainties and unmodeled dynamics is presented in this paper. Robust performance condition that accounts for robust model matching of closed loop system and disturbance rejection is derived. Using the robust performance condition, the feedback controller is designed to meet robust stability and disturbance rejection specifications, while prefilter is used to improve the robust model matching properties. The $H^{\infty}$ and $\mu$ controller for six degree of freedom vehicle with parameter variations are designed and compared. Simulations for hydrodynamic parameter variations and disturbance are presented to demonstrate the achievement of good robust performance.

  • PDF

H$\infty$ Steering Control of an Unmanned Vehicle Driving System by the MR sensors (MR 센서를 이용한 무인 자동 시스템의 H$\infty$ 조향 제어)

  • 박기선;김창섭;이영진;윤강섭;배종일;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.6-6
    • /
    • 2000
  • By using the information obtained from the outputs of MR(MagnetoResistive) sensors for an Unmanned Vehicle Driving System, we develop an algorithm that decides the distance and direction between vehicle and the guideline which is made by the magnet. To improve the robust tracking properties of the closed loop system, we introduce H$\infty$ controller and its application for the Unmanned Vehicle Driving System.

  • PDF

Mixed $H^{2}$/$H^{\infty}$ controller design for linear system with time delay and parameter uncertainty (시간지연 및 파라미터 불확실성을 갖는 선형시스템의 혼합 $H^{2}$/$H^{\infty}$ 제어기 설계)

  • 이갑래;정은태;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.560-564
    • /
    • 1996
  • A mixed H$^{2}$/$H^{\infty}$ controller design method for linear systems with time delay in all variables and parameter uncertainties in all system matrices is proposed. Robust $H^{\infty}$ performance and H$^{2}$ performance condition that accounts for model-matching of closed loop system and disturbance rejection is also derived. With expressing uncertain system with linear fractional transformation form, we transform the robust stability and performance problem to the H$^{2}$/$H^{\infty}$ optimization problem and design a mixed H$^{2}$/$H^{\infty}$ controller. Using the proposed method, mixed H$^{2}$/$H^{\infty}$ controller for underwater vehicle with time delay and parameter variations are designed. Simulations of a design example with hydrodynamic parameter variations and disturbance are presented to demonstrate the achievement of good robust performance.t performance.ance.

  • PDF

A Design of Robust Vibration Control System for a Four-story Shear Structure (4층 층상 구조물에 대한 강인한 진동 제어 시스템 설계)

  • Yang, J.H.;Jeong, H.H.;Jeong, H.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.60-67
    • /
    • 2003
  • This paper introduces basic study how to restrain the vibration of a four story shear structure. We have modeled a four story shear structure mathematically and have identified each parameters by experiment. We have gotten a reduced nominal model through modal analyzing method and the $H_{\infty}$ control theory is used in the control system design to get the robust controller. It's shown that the desirable performances is confirmed through the mathematical simulation. And a designed controller applying the $H_{\infty}$ control theory shows the good performance for the impulse disturbance through the simulation results. That is, the robustness of this control system is confirmed for the ability of disturbance rejection and modeling error.

  • PDF