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Robust H, FIR Sampled-Data Filtering for Uncertain
Time-Varying Systems with Unknown Nonlinearity

Hee-Seob Ryu, Byung-Moon Kwon, and Oh-Kyu Kwon

Abstract: The robust linear H, FIR filter, which guarantees a prescribed Ho, performance, is designed for continuous time-varying
systems with unknown cone-bounded nonlinearity. The infinite horizon filtering for time-varying systems is investigated in terms of

two Riccati equations by the finite moving horizon.
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L. Introduction

Recently, the emergence of many new analysis tools that deal
with the so-called H filtering has been witnessed [10]. The
H, filtering problem is concerned with designing estimators to
minimize the H, norm of the transfer function from the noise
sources to the estimation error. However, the conventional Ho
filters proposed are mainly limited to time-invariant systems.
Therefore they can not be applied to general time-varying sys-
tems on the infinite horizon since one of two Riccati differential
equations required to solve the problem can not be computed on
the infinite horizon [6].

In practical systems, it is mainly continuous-time processes
but output signal is measured by digital devices. The classical
method of analyzing these systems is to develop a discrete-time
method, based on the sampling frequency of the measurements.
Digital filtering, smoothing and predicting devices built in this
way tend to fail when the sampling frequency is too low and
the system dynamics are relatively too fast because the inter-
sampling behavior of the system may be overlooked. So, in
the filtering problems for the continuous-time system, one is
required to produce a continuous-time estimate of an analogue
signal based on sampled-data measurements. In this situation,
the filtering performance measure should be defined directly in
terms of the continuous-time signals. We refer to this filtering
approach as ‘sampled-data filtering’.

This paper deals with the issue of the robust linear Hy, fil-
tering problem for uncertain nonlinear time-varying systems on
the infinite horizon. The basic idea of the current paper is to for-
mulate the robust linear He, filtering problem on the moving
horizon and to adopt the FIR (Finite Impulse Response) filter
structure. The estimator of the current paper is rather a one step
ahead predictor than a filter.

FIR filters are widely used in the signal processing area, and
they were utilized in the estimation problem as the optimal FIR
filters. Since the optimal FIR filters use the finite observations
only over a finite preceding time interval, they can overcome
the divergence problem and have the built-in BIBO (Bounded
Input/Bounded Output) stability and the robustness to the nu-
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merical problems such as coefficient quantization errors and
roundoff errors, which are well known properties of the FIR
structure in signal processing area. Also note that IIR (Infinite
Impulse Response) or recursive filter structure (e.g. Kalman
filter) requires the initial conditions on each horizon, which is
an impractical assumption, but that FIR filter structure does not
requires the initial conditions. The optimal FIR filters are, how-
ever, presented so far not in the Hy setting but in the minimum
variance formulation.

The linear Ho, filter proposed is referred to as robust linear
Hy FIR sampled-dara filtering in the sense that it is a linear
H, filter with the FIR structure for uncertain systems.

I1. Problem formulation and preliminaries
Consider the following class of nonlinear uncertain sampled-
data time-varying systems:

B(t) = [A®) + AAW]e(?) + [G() + ACEH))

- glz(®)] + B)w(t), z(0) = o )

z(t) = L(t)z(t) 2

zq(2) = La(d)z(3) 3)
y(8) = [C(E) + ACH)]z(d) + [K(3) + AK(5)]

- klz ()] + D(@)v(3), Q)

where z(t) € R™ is the state, zg is unknown initial state,
w(t) € R? is the process noise which belongs to L2{0, o0),
y(i) € R™ is the sampled measurement, v(z) € R” is the
measurement noise which belongs to 12(0, 00), z(¢t) € R and
z(t) € R° are linear combinations of state variables to be es-
timated, ¢ is an integer, A(t), B(t), C(z), D(i), G(t), K(3),
L(t) and Lg(z) are known real time-varying bounded matri-
ces of appropriate dimensions with A(t), B(t), G(t) and L(t)
being piecewise continuous, and AA(t), AC(z), AG(t) and
AK(%) represent real time-varying parameter uncertainties in
A, C, G and K respectively and the mapping g(-) : " — R"¢
and k(-) : R™ — R™* are unknown nonlinearities. These ad-
missible uncertainties are assumed to be of the form

AA(t)y=HF({)E, AG(t)=HcFs(t)Es 5)
AC(I) = HdFd(i)Ed, AK('L) = HKFK("i)EK, ©)

where F(t) € RiaXJa Fy(d) Riaxia Fo(t) € RiGXic and
Fy (i) € % %% are unknown time-varying matrices satisfy-
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ing
FTQ)F() <1, FE(t)Fe(t)<I, Vvt o)
Fi(i)Fa(d) <1, FE()Fx() <I, Vi ®)

with the elements of F' and F¢ being Lebesgue measureable,
and K, E4, Eg, Ex, H, Hy, Hc and Hy are known real con-
stant bounded matrices of appropriate dimensions with E, Eg,
H and Hg being piecewise continuous. The matrices A(t),
B(t), C(i), D(z), G(t), K(z), L(t) and L4(i) describe the
nominal mode! of system (1)-(4). For the sake of notation sim-
plification, in the sequel the dependence on ¢ or 7 for all matrices
will be omitted.

Note that nonlinear models of the form (1)-(4) can be used to
represent many important physical systems. A typical example
is a power system modelled in the form of a single machine-
infinite bus [1]. The parameter uncertainty structure as in (5)~(8)
has been widely used in the problems of robust control and ro-
bust filtering of uncertain systems [4],[13],[14] and many prac-
tical system possess parameter uncertainties which can be either
exactly modelled, or overbounded by (5)-(6).

The admissible known nonlinearity functions g(-) and k(-)
are assumed to satisfy the following assumptions.

Assumption 1: a) There exist known constant matrices W,
and Wy such that for all z € R™,

lo@@Nll < Wezll, [k < Wizl

b) [D(:) Ha(i) K(3) Hw(3)]is of full the row rank for
allz € (0,7).

Assumption 1b) means that the robust filtering problem is
‘non-singular’. We observe that when there is no parameter
uncertainty in the output matrix of system (1)-(4), Assumption
1b) reduces to D(z)DT(z) > 0, which corresponds to a stan-
dard nonsingularity condition in the Ho filtering problem for
the nominal system (1)-(4).

In the current paper, the FIR filter is defined by the form

> MG,k T)y(k)

i-—-T
240+ 1|4T) = LE+1)2E@E+1]|4T),

(i+1]47T)

i

where M (£, ;T) is the finite impulse response with the finite
duration T'. The estimation error is defined by

eq(t+1) = za(+ 1) — 2a(i + 1 | 4; T).

The H, FIR filter is obtained by constructing its impulse re-
sponse from that of the H filter on the finite moving horizon
[t — T,t]. Then, the robust Ho, FIR filtering problem we ad-
dress is as follows:

Given a prescribed level of noise attenuation v > 0 and an
initial state weighting matrix R = RT > 0, find a linear or
linear causal filter F such that the estimation error dynamics,
z(t) — 2(¢), is exponentially stable and satisfies H, perfor-
mance

(12 5 2

{lz = 217 + ll2a — 2al*} < ¥*{lwlfi-,8 + IlG-1,5)
+ 25 Rzo} ©)
holds for all admissible uncertainties and for any non-zero

(w,v,z0) € L]0, 00) @ 13(0,0) ®R", where zo = z(t - T)
and R = cov[z(t — T)).

Here, || ||jz—z,4 || -]l ¢~ 7¢) and ||e]|* will mean the L2 norm
over [t — T,1], the l2 norm over (¢ — T,t) and e, respec-
tively. It is noted that the problem does not need the assumption
of stabilizability or detectability of the system since it is formu-
lated on the finite moving horizon. In the sequel, the bounded
real lemma for linear time-varying systems with finite discrete
jumps which will be used throughout the paper, is reviewed.

Consider the following linear time-varying system with finite
discrete jumps:

(1) 1 z(t) = Az(t) + Bw(t), t #1, z(0) =20 (10)
z(i) = Aqz(i )+ Bav(i), Vi€ (0,T) (11)

z(t) = Cz(t) (12)

zq(i) = Caz(i), (13)

where z € R™, w € R? and v € R” belongs to L2[0, T
and 12(0, T), respectively, z € R?, z¢4 € R°, and A, Aq4, B,
B, and C are known real time-varying bounded matrices with

A, B and C being piecewise continuous. Next, introduce the
following worst-case performance index for (X1):

1/2

el + zal® s

J(2:) =sup
”“’”[20,'1"] + ”U”%O,T) + 2§ Rzo

where R = RY > 0 is given weighting matrix for zp and the
supremum is taken over all (w,v,zo) € L3[0,T] ®12(0,T) &
R™ such that ||w||[207T] + lloliom + x8 Rxo # 0.

We now present a version of the bounded real lemma on fi-
nite horizon for interested filtering problem formulation of the
system (31).

Lemma 1: [11]: Consider the system (¥1) and let ¥ > 0 be
a given scalar. Then, the following statements are equivalent:

a) J(X1,R,T) <,

b) There exists a bounded matrix function P(t) = PT(¢) >
0, V¢t € [0, T, such that

—P=ATP+PA+~*PBBTP+C7C, t#1,

P(T)=0 (15)
+*I — BIP(i*)By >0 (16)
P(i) = ATP(i*)Ag + AT P(*)Baly*I — BY

- P(i*)Ba] "B} P(i*)As+ Ci Ca an
P(0%) < ¥R (18)

¢)There exists a bounded matrix function Q(¢t) = QT (t) >
0, ¥Vt € [0, T}, such that

Q> ATQ+QA+~+y2QBBTQ+CTC, t £4,

QT)>0 (19)
v*I - B Q(i*)Ba > 0 (20)
Qi) > ATQ(M) Aa + ATQ(T)Balv*T - BY

- Q(iM)Ba) ' B Qi) Aa + CI Ca @n
Q%) < ¥’R. 22)

Lemma 2: [13]: Let A, E, F', H and M be real matrices of
appropriate dimensions with M being symmetric. Then,

a) For any scalar ¢ > 0 and for all matrices F’ satisfying
FTF<I,

HFE+ETFTHT < lygr +eETE;
€
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b) There exists a matrix P = PT > 0 such that
[A+ HFE|"P[A+ HFE)+ M <0

for all matrices F satisfying FTF < 1, if there exists some
€ > 0 such that the following conditions are satisfied

i) /?H"PH <1

i) ATPA+ ATPH[el —- HTPH|"*HTPA + ¢ETE +
M <0

¢) For any scalar € > 0 such that 2ETE < I and for all
matrices F satisfying FTF < I,

|4+ HFE|[A+ HFE|" < A(I - E"E)™ A" + ZHHT.

L. Robust H,, FIR sampled-data filters with
unknown nonlinearity

In this section, the robust Ho FIR filtering problem for the
system (1)-(4) is considered.

Theorem 1. Consider the system (1)-(4) satisfying As-
sumption 1. Given a scalar -y > 0 and an initial state weighting
matrix R = RT > 0, the robust Ho, FIR sampled-data filter-
ing problem over a moving horizon [0, T is solvable if there
exist positive scalars €1, €2, €3 and €4 such that 2EZEq < I,
€3 EX Ex < I and the following conditions are satisfied:

a) There exists a bounded solution P(t) = PT(t) > 0 over
the moving horizon [0, T] to the Riccati differential equation
with jumps

P(t) + ATP(t) + P()A +~2P(t)[BBT + BBT|P()
+ EETE4+WIW, =0, t#1 (23)
P() = P(i*) + ET Eqs + WEW, (24)

with terminal condition P(T) = 0 and such that P(0%) <
2R, where

B:[ ZH ~G(I- &ELEs)™? 2Hg ] ©5)

b) There exists a bounded solution S(t) over the moving hori-
zon [0, T to the Riccati differential equation with jumps

S(t) = AS(t) + S(W) AT + 4 2S(t)LTLS(t) + BBT
+ BB, (26)
8() =[S ") =y *LiLa+ CTVTIC]T! @7
with initial condition S(0) = [R — v~2P(0)} %, where
A(t) = A+ (v 2BBT + ;2 HHT)P(2) (28)
VvV =DDT
D= [D 2Hy YK(I - SELEx)™/? g;HK] . (29)

Moreover, if conditions a) and b) are satisfied, a suitable filter
is given by

i(t) = Az(t) (30)
2(i) = #@7) +SECTVHy(i) - C2(T)] (3
3(t) = Li(t) (32)

2a = La#(i). (33)

Proof: First, associated with (1)-(4) and (30)-(33), we define
Z = z — Z. Since z(z) = (™), from (1)-(4) and (30)-(33), we

have that

Z(t) = [A+ AAJE() + [AA — AA)z(2)
+ Bw(t) + [G + AGlg(z) — Gg(%)
#(i) = Aa#(i7) + Ba A Cz(i”) + BaK (k[z(i7)]
— k[#(:7)]) + Ba A Kk[z(:7)] + BaDu(3),

where

Ag=1-8SH)CTV™IC, By = -8GE)CTV 1,
AA(t) = (v 2BBT 4 *HHT)P(t).

Hence, we have the following estimation error dynamics for the
estimator error z — Z and zq — Zg is as follows

N(t) = [Ae + H.F(t)Ee]n(t) + Bew(t)

+ [Ge + Hye P Egelge[n(t)] (4
n() = [Ade + HaeFaBuaeln(i™) + Baev(i)

+ [Ke + Hie Fr Exelke[n(i7)) (35)
2(t) — 2(t) = Len(?) (36)
za(t) — 24(i) = Laen(s), (37

where n = [z #7]7T and

A 0

I 0
Ae_[—AAe A+AAej"Ade_': :l’

0 As
B 0 0
Be——l:B:}:Bde—[BdD:l:er—[BdHK}a

[ o [ He [H
Hde—[BdeJ’ng_[Hc]’He_[H]’

Ee=[E 0}, Eqe =[FEs4 0],
Ege = EG’ Ex. = EK;
Le=[0 L], Lge = [0 Ldj,

@:[ﬂ,Ke:[BSK],
ge[n(t)] = g(z), ke[n(i7)] = klz(i7)].

Note that by Assumption 1,

lge(Il < |Wonll,¥n € R*™
<

k(|| < IWenl, v € B>, (38)
where
We={W, 0], Wae=[ Wi 0]. (39)

From Theorem 3.1 in [5], condition b) is necessary and suffi-
cient for the solvability of the moving horizon H.., FIR filtering
problem for the linear system with sampled measurements

@) = Aet) + B Blw(t) (40)
#(i) = CE&() + Do(3) (41)
Z(t) = L&(2) (42)
za(2) = La€(4), 43)

where £ € R"™ is the state, & is an unknown initial state,
@ € RPTH7G s the process noise, §(z) € R™ is the sampled
measurement, (i) € RIT*T™K is the measurement noise,
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z € R" and z; € R° are linear combinations of the state vari-
ables to be estimated, and the filtering performance measure is
given by

1/2

} @4

sup{ 12 = Zell* + 122 — Zall®
@)% 1) + 1512,y + &8 [R — ¥~ 2P(0)}éo]

where Z and Z4 are the estimates of Z and Zg4, respectively.
In the above, the supremum is taken over all (@,4,&) €
Ls[0, 00) @ 12(0,00) @ R™ such that ”15”[20,7"] + ”1_’”%01) +
EF[R—~2P(0))éo # 0. Also, observe that suitable estimates
% and 2,4 are given by
(Be1) 1 Eet) = ALe(t), t#14; &(0)=0

£e(i) = &(i7) + S@OCTV (i) — C&(7)]

Z(t) = Lé(2)

24(3) = La.(3).
Now, letting £ = £ — &, it follows from the system (1) and
(40)-(43) that

&t) = AW +1B Blaw), &0) =6
£(3) = A«€(i") + BaDa(s)
2(t) — &(t) = L&(t)
Za(i) - Za(i) = Laé(3).
Since the above system satisfies (44) by Lemma 1, this implies

that there exists a bounded matrix Z(t) = ZT(t) > 0, satisfy-
ing the following Riccati differential equation with jumps

Z2(t) + AT Z(t) + Z(t) A+~ 2Z(t)[BBT + BB"]

L Z@)+LTL =0, t#i Z(T)=0 (45)
v - DTBYZ(i")BsD >0, Vie (0,7) (46)
Z(3) = AT Z2(:M)Ag + A Z(Y)BaD[y* I — DT

By ZiYBaD| ' DT B Z(iY)Aq + L Ly (47)
Z(0) < v*R — P(0). (48)

Next, let

xo=[ 7 ]

where P(t) and Z(t) are the non-negative definite solution
of (23) and (24) and (45)-(48), respectively. Note that since
Z(0) < ¥*R — P(0), there exists a sufficiently small scalar
é > 0 such that

X(0) < Xo [ P(O%) 4461 0 ]

0 +2R — P(0t) - 41

It is straightforward to verify that there exists a matrix X () =
XT(t) > 0, vt € [0, T satistying the following Riccati differ-
ential equation with jumps

X))+ ATX(t) + X(t)Ae + X(£) B BT X (t)

+CTC.=0, t#4 X(T)=0 (49)
I-BLX(@i")Ba >0, ic(0,T) (50)
X (@) = AL X(i7)Age + AL X (i) ByelI — BL.

- X (%) Bae) ' BLX (i) Ade + CLCue, (51)

X (0) < Xo, (52)

where

Be = [Be 'Y_lBe], Bde - [Bde ’Yﬁlee],
ée = [C_’e Le]Ty éde = [C’de Lde]T,

and 4 being a positive number with B., Bae, C. and Cy. such
that

B.Bf = G.(I - §ELE,) 'GT
+ E%HeHET + glg‘ngHgTe (53)

BaeBj. = K.(I — 1B Ex.) 'K,
2 + %H@HZL + E%HMH,& 54)

CTC. = SESE. + W)W, (55)
Ci.Cae = €3E.Eac + Wi Wi, (56)

where Wg and Wk are as in (39).
By Lemma 1, (49)-(52) implies that the system as below

(Z3) : €(t) = Ack(t) + Beis(t) (57)
£(i) = Aaeb(i”) + Baed(i) (58)
ze(t) = Ceb(?) (59)
ze(i) = Caek(3) (60)

satisfies J(23,72,X0,T) < I, where Xo = v~2Xo. Finally,
by considering the system (34)-(37) and (57)-(60), and the fact
that the initial state of (34) satisfies 77 (0) Xon(0) = z3 Rz,
we conclude that the estimation error dynamics (34)-(37) satisfy

{llz = 21* + llz2 = 2l*} < ¥*{lwlifo.zs + vllGo,zy

+ 5 Rzo} (61)
for all non-zero (w,v, o) € L2[0,00) @ 12(0,0) & R™ and
for all admissible uncertainties. ]

IV. Examples

To demonstrate the use of the above theory we consider the
robust H, FIR filter with unknown cone-bounded nonlinearity
for a simple second-order problem. We show the advantage of
the proposed technique by comparing its results with the cor-
responding results of the H,, nonlinear estimator of Shaked
and Berman [10] and the extended Kalman filter(EKF), that has
been widely used in the past in estimation of nonlinear systems.

Consider the time-invariant process with a saturating nonlin-
earity in the system dynamics

Tl _ HT1,
T2,41 arctan(nzi; + Aza,)
+ H F(z:)E(z;) + Brws,  (62)

where 4 = 0.91, 7 = —0.07and A = 0.1,

0.5 0.4
B’““[ 1.5]’ Hl_[o.zx]’
E(x;) = [0 1] z; and | F(z;) | I, Vi € [0, N] and Vz; €
R2,
We assume here that the discretized measurement is de-
scribed by

yi = cos(2x2,) + 3'2321. + HoF(z;)E(z;:) + 0.01w;, (63)
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where Hy = 2. We consider the time interval [0, N], where
N = 500, and we are looking for an estimate of Lz;, where
L = [1 0]. We also assumed that {w;} are uncorrelated stan-
dard gaussian white noise processes.

We have simulated the above three estimators for the worst
values of the uncertainty F', namely for each estimator we de-
scribe the estimators. Figure 2, 3 and 4 show the estimation
error, where F' = 1 for the robust H., FIR filter, the robust
nonlinear Ho, filter and the Extended Kalman filter and - for
the robust Ho, FIR filter and robust nonlinear H, filter are
4.326 and 1.419, respectively. Note that estimation etror covari-
ances of the proposed Ho FIR filter, the robust nonlinear Hoo
filter and the extended Kalman filter are 1.5478e-003, 1.7256¢-
003 and 3.261e-003. These result exemplify that the estimation
performance of the robust H, FIR filter is better than those ob-
tained by the robust nonlinear Ho, filter and by the Extended
Kalman filter.

02 T T T T T T T

0.1 =

o

0.1 -

1 L L L ¢
2 40 60 80 100 120 140 160 180 20
Time

-0z
[]

02 T T T T T T T T T

02 1 " : L s L . L :
2 40 60 80 100 120 140 160 180 200
Time

Fig. 3. Estimation error of the extended Kalman filter.

V. Conclusions
This paper has addressed the problem of robust He, FIR fil-
tering problem based on sampled measurements for a class of
linear continuous-time systems subject to unknown initial state,
real norm-bounded parameter uncertainty and unknown cone-
bounded nonlinearity. Attention is focused on the simultaneous

estimation of a continuous and discrete time-varying signal by
using a performance measure which involves a mixed L3 /l2

norm of the estimation error. Note that unlike the case where
the nonlinearity g(-) and k(-) are unknown, the filter in the

case where the nonlinearities are known Lipschitz nonlinear-
ity is nonlinear filter [5]. We developed linear causal filter on
the moving horizon and sampled measurements, which guaran-
tees a prescribed Hoo performance subject to unknown initial
state, real norm-bounded parameter uncertainty and unknown
cone-bounded nonlinearity.
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