• Title/Summary/Keyword: robotic system

Search Result 817, Processing Time 0.029 seconds

Development of an Active Gait Assistive Device with Haptic Information (햅틱 연동 능동 보행보조장치 개발)

  • Pyo, Sang-Hun;Oh, Min-Kyun;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.553-559
    • /
    • 2015
  • The purpose of this research is to develop a gait assistive device to enhance the gait stability and training efficiency of stroke patients. The configuration of this device is mainly composed of a motored wheel and a single cane whose lower end is attached to a motored wheel frame. A patient can feel haptic information from continuous ground contact from the wheel while walking through the grip handle. In addition, the wheeled cane can avoid using excessive use of the patient's upper limb for weight support and motivate the patient to use a paralyzed lower limb more actively. Moreover, the proposed device can provide intuitive and safe user interaction by integrating a force sensor and a tilt sensor equipped to the cane frame, and a switch sensor at the cane's handle. The admittance control has been implemented for the patient to change the walking speed intuitively by using the interaction forces at the handle. A hemi-paretic stroke patient participated in the walking assistive experiments as a pilot study to verify the effectiveness of the proposed haptic cane system. The results showed that the patient could improve walking speed and muscle activations during walking with a constant speed mode of the haptic cane. Moreover, the patient could maintain the preferred walking speeds and gait stability regardless of the magnitude of resistance forces with the admittance control mode of the haptic cane. The proposed robotic gait assistive device with a simple and intuitive mechanism can provide efficient gait training modes to stroke patients with high possibilities of widespread utilizations.

A Study on the Achievement Criteria of Robot Computing Curriculum for Elementary School (초등학교 로봇컴퓨팅교육을 위한 교육내용체계의 성취기준에 관한 연구)

  • Kim, Chul
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.1
    • /
    • pp.97-104
    • /
    • 2017
  • This paper evaluates the appropriateness of the proposed robot education curriculum to consider conceptual understanding and learning activities model considering the curriculum and achievement criteria in order to make it easier to apply for a course in robot area. The professors of dept. of computer education at national universities of education reviewed the importance of education contents system and appropriateness of education period. Based on the results of the review, the conceptual elements and achievement standards of each sub-area were revised and supplemented, and then evaluated in three stages. Finally, the educational elements of the concept factors and achievement criteria were agreed upon. The proposed robotic computing education information systems and the achievement standards for schools in the area, as well as to match the grade level of the students without distinction variety of robots will be able to take advantage of computing education activities to reorganize the robot computing courses.

CYBERKNIFE RADIOSURGERY FOR INOPERABLE RECURRED ORAL CANCER (사이버나이프를 이용한 수술 불가능한 재발성 구강암의 치험례)

  • Kim, Yong-Kack;Lee, Tae-Hee;Kim, Chul;Kim, Sung-Jin;Kim, Hyuk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.1
    • /
    • pp.65-68
    • /
    • 2004
  • CyberKnife is a stereotactic radiosurgery system which could be used to treat many tumors and lesions. It provides the surgeon unparalleled flexibility in targeting using a compact light linear accelerator mounted on a robotic arm. Advanced image guidance technology tracks patient and target position during treatment, ensuring accuracy without the use of an invasive head frame. CyberKnife with Dynamic Tracking Software is cleared to provide radiosurgery for lesions anywhere in the body when radiation treatment is indicated. It has often been used to radiosurgically treat otherwise untreatable tumors and malformations. Moreover, this instrument treats tumors at body sites, most of which are unreachable by other stereotactic systems. Compared with conventional radiotherapy, it is fundamentally different that using non-invasive, frameless, no excessive radiation exposure to normal tissue. In oral malignant neoplasm, surgical excision and radiation therapy should be tried first, additionally chemotherapy could be considered. However, after failure of conventional therapies, patients had poor systemic condition and surgical limitation. So, CyberKnife could be a suitable therapy. A 49 years man was referred in recurred mandibular cancer treated by radiotherapy. The tumor was considered inoperable, because of extensive invasion and was not expected to good response to conventional therapies. We experienced a case of CyberKnife after 4 cycle chemotherapies, so we report it with review of literature.

Cloudboard: A Cloud-Based Knowledge Sharing and Control System (클라우드보드: 클라우드 기반 지식 공유 및 제어 시스템)

  • Lee, Jaeho;Choi, Byung-Gi;Bae, Jae-Hyeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.3
    • /
    • pp.135-142
    • /
    • 2015
  • As the importance of software to society has grown, more and more schools worldwide teach coding basics in the classroom. Despite the rapid spread of coding instruction in grade schools, experience in the classroom is certainly limited because there is a gap between the curriculum and the existing computing environment such as the mobile and cloud computing. We propose an approach to fill this gap by using a mobile environment and the robot on the cloud-based platform for effective teaching. In this paper, we propose an architecture called Cloudboard that enables knowledge sharing and collaboration among knowledge providers in the cloud-based robot platforms. We also describe five representative architectural patterns that are referenced and analyzed to design the Cloudboard architecture. Our early experimental results show that the Cloudboard can be effective in the development of collective robotic systems.

Estimating Distance of a Target Object from the Background Objects with Electric Image (전기장을 이용한 물체의 거리 측정 연구)

  • Sim, Mi-Young;Kim, Dae-Eun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.3
    • /
    • pp.56-62
    • /
    • 2010
  • Weakly electric fish uses active sensing to detect the distortion of self-generated electric field in the underwater environments. The active electrolocation makes it possible to identify target objects from the surroundings without vision in the dark sea. Weakly electric fish have many electroreceptors over the whole body surface of electric fish, and sensor readings from a collection of electroreceptors are represented as an electric image. Many researchers have worked on finding features in the electric image to know how the weakly electric fish identify the target object. In this paper, we suggest a new mechanism of how the electrolocation can recognize a given target object among object plants. This approach is based on the differential components of the electric image, and has a potential to be applied to the underwater robotic system for object localization.

Impedance-Control Based Peg-in-Hole Assembly with a 6 DOF Manipulator (6축 머니퓰레이터를 이용한 임피던스 제어 기반의 원형 펙 조립)

  • Kim, Byeong-Sang;Kim, Young-Loul;Song, Jae-Bok;Son, Seung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.347-352
    • /
    • 2011
  • The maximum accuracy of position control by using an industrial robot is about $100{\mu}m$, whereas the maximum tolerated imprecision in the position of precision parts is about several tens of micrometers. Therefore, it is very difficult to assemble parts by position control only. Moreover, in the case of precision assembly, jamming or wedging can easily occur because of small position/orientation errors, which may damage the parts to be assembled. To overcome these problems, we investigated a force control scheme that provides proper motion in response to the contact force. In this study, we constructed a force control system that can be easily implemented in a position-controlled manipulator. Impedance control by using an admittance filter was adopted to perform stable contact tasks. It is shown that the precision parts can be assembled well by adopting impedance control and blind search methods.

Fundamental framework toward optimal design of product platform for industrial three-axis linear-type robots

  • Sawai, Kana;Nomaguchi, Yutaka;Fujita, Kikuo
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.157-164
    • /
    • 2015
  • This paper discusses an optimization-based approach for the design of a product platform for industrial three-axis linear-type robots, which are widely used for handling objects in manufacturing lines. Since the operational specifications of these robots, such as operation speed, working distance and orientation, weight and shape of loads, etc., will vary for different applications, robotic system vendors must provide various types of robots efficiently and effectively to meet a range of market needs. A promising step toward this goal is the concept of a product platform, in which several key elements are commonly used across a series of products, which can then be customized for individual requirements. However the design of a product platform is more complicated than that of each product, due to the need to optimize the design across many products. This paper proposes an optimization-based fundamental framework toward the design of a product platform for industrial three-axis linear-type robots; this framework allows the solution of a complicated design problem and builds an optimal design method of fundamental features of robot frames that are commonly used for a wide range of robots. In this formulation, some key performance metrics of the robot are estimated by a reducedorder model which is configured with beam theory. A multi-objective optimization problem is formulated to represent the trade-offs among key design parameters using a weighted-sum form for a single product. This formulation is integrated into a mini-max type optimization problem across a series of robots as an optimal design formulation for the product platform. Some case studies of optimal platform design for industrial three-axis linear-type robots are presented to demonstrate the applications of a genetic algorithm to such mathematical models.

A Study on Development of the Optimization Algorithms to Find the Seam Tracking (용접선 추적을 위한 최적화 알고리즘 개발에 관한 연구)

  • Jin, Byeong-Ju;Lee, Jong-Pyo;Park, Min-Ho;Kim, Do-Hyeong;Wu, Qian-Qian;Kim, Il-Soo;Son, Joon-Sik
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The Gas Metal Arc(GMA) welding, called Metal Inert Gas(MIG) welding, has been an important component in manufacturing industries. A key technology for robotic welding processes is seam tracking system, which is critical to improve the welding quality and welding capacities. The objectives of this study were to develop the intelligent and cost-effective algorithms for image processing in GMA welding which based on the laser vision sensor. Welding images were captured from the CCD camera and then processed by the proposed algorithm to track the weld joint location. The proposed algorithms that commonly used at the present stage were verified and compared to obtain the optimal one for each step in image processing. Finally, validity of the proposed algorithms was examined by using weld seam images obtained with different welding environments for image processing. The results proved that the proposed algorithm was quite excellent in getting rid of the variable noises to extract the feature points and centerline for seam tracking in GMA welding and could be employed for general industrial application.

Work Environment Modeling and Excavator Moving Plan for Automated Earthworks (자동화 토공을 위한 작업환경 모델링 및 굴삭기 이동계획)

  • Kim, Sung-Keun;Cho, Ye-Won;Kim, Ha-Yearl;Ock, Jong-Ho
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.343-346
    • /
    • 2007
  • Recent advances in automation and robotic technologies in the manufacturing industry suggest that the greater level of automation may be extremely beneficial for the construction industry. However, only some of the high-technology advances may be applied to the construction industry due to the fast-changing construction environment in which work locations are constantly changing and material, equipment, and workers are always moving. The earthwork operation for site development is a good candidate for applying automation technology, because it is a very repetitive and tedious task and needs lots of construction equipment. This paper presents the model of a construction environment and a moving plan for an automated earthwork system, which can produce an effective moving path of an excavator platform with an Octree model. To generate the moving path, the know-how of skilled operators and construction managers is added in the proposed model.

  • PDF

A Study on Utilization of Drone for Public Sector by Analysis of Drone Industry (국내외 드론산업 동향 분석을 통한 공공분야에서의 드론 활용방안에 대한 연구)

  • Sim, Seungbae;Kwon, Hunyeong;Jung, Hosang
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.25-39
    • /
    • 2016
  • The drone is an unmanned aerial vehicle which has no human pilot. Drones can be classified into military drones, commercial drones, and personal drones by usage. Also, drones can be classified from large-sized to nano-sized drone by size and autonomous, remote controlled drone by control type. Especially, military drones can be classified into low-altitude drones, medium-altitude, and high-altitude drones by altitude. Recently, the drone industry is one of the fast growing industries in the world. As drone technologies have become more advanced and cost-effective, Korean government has set its goal to become a top-level country in drone business. However, the government's strict regulation for drone operations is one of the biggest hurdles for the development of the related technologies in Korea and other countries. For example, critical problems for drone delivery can be classified into technical issues and institutional issues. Technical issues include durability, conditional awareness, grasp and release mechanisms, collision avoidance systems, drone operating system. Institutional issues include pilot and operator licensing, privacy rules, noise guidelines, security rules, education for drone police. This study analyzes the trends of the drone industry from the viewpoint of technology and regulation. Also, we define the business areas of drone utilization. Especially, the drone business types or models for public sector are proposed. Drone services or functions promoting public interests need to be aligned with the business reference model of Korean government. To define ten types of drone uses for public sector, we combine the business types of government with the future uses of drones that are proposed by futurists and business analysts. Future uses of drones can be divided into three sectors or services. First, drone services for public or military sectors include early warning systems, emergency services, news reporting, police drones, library drones, healthcare drones, travel drones. Second, drone services for commercial or industrial services include parcel delivery drones, gaming drones, sporting drones, farming and agriculture drones, ranching drones, robotic arm drones. Third, drone services for household sector include smart home drones.