• Title/Summary/Keyword: robotic system

Search Result 817, Processing Time 0.028 seconds

A Study on the Parallel Escape Maze through Cooperative Activities of Humanoid Robots (인간형 로봇들의 협력 작업을 통한 미로 동시 탈출에 관한 연구)

  • Jun, Bong-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1441-1446
    • /
    • 2014
  • For the escape from a maze, the cooperative method by robot swarm was proposed in this paper. The robots can freely move by collecting essential data and making a decision in the use of sensors; however, a central control system is required to organize all robots for the escape from the maze. The robots explore new mazes and then send the information to the system for analyzing and mapping the escaping route. Three issues were considered as follows for the effective escape by multiple robots from the mazes in this paper. In the first, the mazes began to divide and secondly, dead-ends should be blocked. Finally, after the first arrivals at the destination, a shortcut should be provided for rapid escaping from the maze. The parallel-escape algorithms were applied to the different size of mazes, so that robot swarm can effectively get away the mazes.

A Study on the Design and Development of Robot Game-based Project for Teaching Children to Program Computers (프로그램교육 목적의 로봇게임 프로젝트 학습 구안에 관한 연구)

  • Shin, Seung-Young;You, Sang-Mi;Kim, Mi-Ryang
    • Journal of Internet Computing and Services
    • /
    • v.10 no.6
    • /
    • pp.159-171
    • /
    • 2009
  • The objective of this research is to explore a method to utilize a programmable robot, as a potential learning tool in the elementary school's curricula. Due to their programmability and operational ease of use, programmable robots are among digital toys that today offer specially instructive features. In this research, we developed the robot game-based project contents as a tool for teaching the elementary school children to learn the algorithm, the essential part of computer programming. The LEGO material, selected as the construction kit for robot, consists of a mechanical assembly system, a set of sensors and actuators, a central control unit, a programming environment. The project requires the children to complete 3 separate tasks, each of which is developed based on the principles of algorithm. The classroom feedback supports that the robotic experiences provided the children with fun and absorption. It is likely that implementing learning with robot in regular classroom in elementary school can bring new possibilities to the educational system, provided that a thorough preparation backs up the plan.

  • PDF

Robot Manipulator Visual Servoing via Kalman Filter- Optimized Extreme Learning Machine and Fuzzy Logic

  • Zhou, Zhiyu;Hu, Yanjun;Ji, Jiangfei;Wang, Yaming;Zhu, Zefei;Yang, Donghe;Chen, Ji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2529-2551
    • /
    • 2022
  • Visual servoing (VS) based on the Kalman filter (KF) algorithm, as in the case of KF-based image-based visual servoing (IBVS) systems, suffers from three problems in uncalibrated environments: the perturbation noises of the robot system, error of noise statistics, and slow convergence. To solve these three problems, we use an IBVS based on KF, African vultures optimization algorithm enhanced extreme learning machine (AVOA-ELM), and fuzzy logic (FL) in this paper. Firstly, KF online estimation of the Jacobian matrix. We propose an AVOA-ELM error compensation model to compensate for the sub-optimal estimation of the KF to solve the problems of disturbance noises and noise statistics error. Next, an FL controller is designed for gain adaptation. This approach addresses the problem of the slow convergence of the IBVS system with the KF. Then, we propose a visual servoing scheme combining FL and KF-AVOA-ELM (FL-KF-AVOA-ELM). Finally, we verify the algorithm on the 6-DOF robotic manipulator PUMA 560. Compared with the existing methods, our algorithm can solve the three problems mentioned above without camera parameters, robot kinematics model, and target depth information. We also compared the proposed method with other KF-based IBVS methods under different disturbance noise environments. And the proposed method achieves the best results under the three evaluation metrics.

A Study on the Controller Design of 3D Printed Robot Hand using TPU Material (TPU 소재를 이용한 3D 프린팅 로봇 손의 제어기 설계에 관한 연구)

  • Young-Rim Choi;Ye-Eun Park;Jong-Wook Kim;Sunhee Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.2
    • /
    • pp.312-327
    • /
    • 2024
  • In this study, a rehabilitation 3D printed wearable device was developed by combining an assembly-type robot hand and an integral-type robot hand through fused deposition 3D printing manufacturing with various hardness TPU (Thermoplastic Polyurethane) filaments. The hardware configuration of the robot hand includes a controller designed with four motors, one small servo motor, and a circuit board. In the case of the assembly-type robot hand model, a 3D printed robot hand was assembled using samples printed with TPU of hardness 87A and 95A. It was observed that TPU with a hardness of 95A was suitable for use due to shape stability. For the integrated-type robot hand model, the external sample using TPU of hardness 95A could be modified through a cutting method, and the hardware configuration is the same as the assembly-type. The system structure of the 3D printed robot hand was improved from an individual control method to a simultaneous transmission method.Furthermore, the system architecture of an integrated 3D printed robotic hand rehabilitation device and the application of the rehabilitation device were developed.

Robust Real-time Pose Estimation to Dynamic Environments for Modeling Mirror Neuron System (거울 신경 체계 모델링을 위한 동적 환경에 강인한 실시간 자세추정)

  • Jun-Ho Choi;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.583-588
    • /
    • 2024
  • With the emergence of Brain-Computer Interface (BCI) technology, analyzing mirror neurons has become more feasible. However, evaluating the accuracy of BCI systems that rely on human thoughts poses challenges due to their qualitative nature. To harness the potential of BCI, we propose a new approach to measure accuracy based on the characteristics of mirror neurons in the human brain that are influenced by speech speed, depending on the ultimate goal of movement. In Chapter 2 of this paper, we introduce mirror neurons and provide an explanation of human posture estimation for mirror neurons. In Chapter 3, we present a powerful pose estimation method suitable for real-time dynamic environments using the technique of human posture estimation. Furthermore, we propose a method to analyze the accuracy of BCI using this robotic environment.

Verification of X-sight Lung Tracking System in the CyberKnife (사이버나이프에서 폐종양 추적 시스템의 정확도 분석)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Seong-Hoon;Cho, Sam-Ju;Min, Chul-Ki;Cho, Kwang-Hwan;Lee, Sang-Hoon;Choi, Jin-Ho;Lim, Sang-Wook;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.174-179
    • /
    • 2009
  • To track moving tumor in real time, CyberKnife system imports a technique of the synchrony respiratory tracking system. The fiducial marker which are detectable in X-ray images were demand in CyberKnife Robotic radiosurgery system. It issued as reference markers to locate and track tumor location during patient alignment and treatment delivery. Fiducial marker implantation is an invasive surgical operation that carries a relatively high risk of pneumothorax. Most recently, it was developed a direct lung tumor registration method that does not require the use of fiducials. The purpose of this study is to measure the accuracy of target applying X-sight lung tracking using the Gafchromic film in dynamic moving thorax phantom. The X-sight Lung Tracking quality assurance motion phantom simulates simple respiratory motion of a lung tumor and provides Gafchromic dosimetry film-based test capability at locations inside the phantom corresponding to a typical lung tumor. The total average error for the X-sight Lung Tracking System with a moving target was $0.85{\pm}0.22$ mm. The results were considered reliable and applicable for lung tumor treatment in CyberKnife radiosurgery system. Clinically, breathing patterns of patients may vary during radiation therapy. Therefore, additional studies with a set real patient data are necessary to evaluate the target accuracy for the X-sight Lung Tracking system.

  • PDF

An Image Processing System for the Harvesting robot$^{1)}$ (포도수확용 로봇 개발을 위한 영상처리시스템)

  • Lee, Dae-Weon;Kim, Dong-Woo;Kim, Hyun-Tae;Lee, Yong-Kuk;Si-Heung
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.172-180
    • /
    • 2001
  • A grape fruit is required for a lot of labor to harvest in time in Korea, since the fruit is cut and grabbed currently by hand. In foreign country, especially France, a grape harvester has been developed for processing to make wine out of a grape, not to eat a fresh grape fruit. However, a harvester which harvests to eat a fresh grape fruit has not been developed yet. Therefore, this study was designed and constructed to develope a image processing system for a fresh grape harvester. Its development involved the integration of a vision system along with an personal computer and two cameras. Grape recognition, which was able to found the accurate cutting position in three dimension by the end-effector, needed to find out the object from the background by using two different images from two cameras. Based on the results of this research the following conclusions were made: The model grape was located and measured within less than 1,100 mm from camera center, which means center between two cameras. The distance error of the calculated distance had the distance error within 5mm by using model image in the laboratory. The image processing system proved to be a reliable system for measuring the accurate distance between the camera center and the grape fruit. Also, difference between actual distance and calculated distance was found within 5 mm using stereo vision system in the field. Therefore, the image processing system would be mounted on a grape harvester to be founded to the position of the a grape fruit.

  • PDF

A Study on Smart Factory System Design for Screw Machining Management (나사 가공 관리를 위한 스마트팩토리 시스템 설계에 관한 연구)

  • Lee, Eun-Kyu;Kim, Dong-Wan;Lee, Sang-Wan;Kim, Jae-joong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.329-331
    • /
    • 2018
  • In this paper, we propose a monitoring system that starts with the supply of raw materials for threading, is processed into a lathe machine, and checks for defects of the product are automatically performed by the robot with Smart Factory technology through assembly and disassembly. Completion check according to the production instruction quantity and production instruction is made by checking the production status according to whether or not the raw material is worn by the displacement sensor, and checking the pitch and the contour of the processed female and male to determine OK and NG. The robotic system acts as a relay for loading and unloading of raw materials, pallet transfer, and overall process, and it acts as an intermediary for organically driving. The location information of the threaded products is collected by using the non-contact wireless tag and the energy saving system Production efficiency and utilization rate were checked. The environmental sensor collects the air-conditioning environment data (temperature, humidity), measures the temperature and humidity accurately, and checks the quality of product processing. It monitors and monitors the driving hazard level environment (overheating, humidity) of the product. Controls for CNC and robot module PLC as a heterogeneous system.

  • PDF

Evaluation of Carryover Contamination on Autopipetting System (자동분주기의 이월오염 평가)

  • Lee, Hyun-Ju;Min, Gyung-Sun;Shin, Sun-Young;Woo, Jae-Ryong;Lee, Ho-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.189-192
    • /
    • 2009
  • Purpose: Autopipetting system is an efficient automated equipment pipetting patient samples and reagents for rapid and accurate test. However, it can cause carryover between high concentration sample and low concentration sample. We evaluated carryover contamination of TECAN freedom Evo 100 autopipetting system. Materials and Method: We studied carryover contamination of $\alpha$-fetoprotein (AFP) and carcinoembryonic antigen (CEA) test on TECAN freedom Evo 100 autopipetting system. Very low concentration control samples were pipetted for comparison to the contaminated very low concentration samples. Then, The contaminated very low concentration samples were pipetted following the high concentration samples were pipetted alternately. The difference of low concentration samples represents carryover. The target value to decide carryover was 1ppm (parts per million). Results: For AFP, the mean values of the uncontaminated control samples and the contaminated samples were less than 0.6 IU/mL (the l imit of detection (LoD)). Carryover did not occur even though the high concentration sample which value was 650000 IU/mL. For CEA, the values of the low concentration control samples and the contaminated samples were less than 0.2 ng/mL (LoD). Carryover did not occur even though the high concentration sample which value was 65,000 ng/mL. Conclusions: Sample carryover was not found on TECAN freedom Evo 100 autopipetting system for AFP, CEA. However, carryover is a potential problem with automated instruments and robotic pipetting systems. Therefore, Clinical laboratories must periodically verify carryover contamination for the accurate and confidential test results.

  • PDF

Design of a Displacement and Velocity Measurement System Based on Environmental Characteristic Analysis of Laser Sensors for Automatic Mooring Devices (레이저 센서의 환경적 특성 분석에 기반한 선박 자동계류장치용 변위 및 속도 측정시스템 설계)

  • Jin-Man Kim;Heon-Hui Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.980-991
    • /
    • 2023
  • To prevent accidents near the quay caused by a ship, ports are generally designed and constructed through navigation and berthing safety assessment. However, unpredictable accidents such as ship collisions with the quay or personal accidents caused by ropes still occur sometimes during the ship berthing or mooring process. Automatic mooring systems, which are equipped with an attachment mechanism composed of robotic manipulators and vacuum pads, are designed for rapid and safe mooring of ships. This paper deals with a displacement and velocity measurement system for the automatic mooring device, which is essential for the position and speed control of the vacuum pads. To design a suitable system for an automatic mooring device, we first analyze the sensor's performance and outdoor environmental characteristics. Based on the analysis results, we describe the configuration and design methods of a displacement and velocity measurement system for application in outdoor environments. Additionally, several algorithms for detecting the sensor's state and estimating a ship's velocity are developed. The proposed method is verified through some experiments for displacement and speed measurement targeted at a moving object with constant speed.