• Title/Summary/Keyword: robot systems

Search Result 3,642, Processing Time 0.029 seconds

Neural Network Compensation for Impedance Force Controlled Robot Manipulators

  • Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.17-25
    • /
    • 2014
  • This paper presents the formulation of an impedance controller for regulating the contact force with the environment. To achieve an accurate force tracking control, uncertainties in both robot dynamics and the environment require to be addressed. As part of the framework of the proposed force tracking formulation, a neural network is introduced at the desired trajectory to compensate for all uncertainties in an on-line manner. Compensation at the input trajectory leads to a remarkable structural advantage in that no modifications of the internal force controllers are required. Minimizing the objective function of the training signal for a neural network satisfies the desired force tracking performance. A neural network actually compensates for uncertainties at the input trajectory level in an on-line fashion. Simulation results confirm the position and force tracking abilities of a robot manipulator.

Hierarchical Behavior Control of Mobile Robot Based on Space & Time Sensor Fusion(STSF)

  • Han, Ho-Tack
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.314-320
    • /
    • 2006
  • Navigation in environments that are densely cluttered with obstacles is still a challenge for Autonomous Ground Vehicles (AGVs), especially when the configuration of obstacles is not known a priori. Reactive local navigation schemes that tightly couple the robot actions to the sensor information have proved to be effective in these environments, and because of the environmental uncertainties, STSF(Space and Time Sensor Fusion)-based fuzzy behavior systems have been proposed. Realization of autonomous behavior in mobile robots, using STSF control based on spatial data fusion, requires formulation of rules which are collectively responsible for necessary levels of intelligence. This collection of rules can be conveniently decomposed and efficiently implemented as a hierarchy of fuzzy-behaviors. This paper describes how this can be done using a behavior-based architecture. The approach is motivated by ethological models which suggest hierarchical organizations of behavior. Experimental results show that the proposed method can smoothly and effectively guide a robot through cluttered environments such as dense forests.

Adaptive Neural Network Control for Robot Manipulators

  • Lee, Min-Jung;Choi, Young-Kiu
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.43-50
    • /
    • 2002
  • In the recent years neural networks have fulfilled the promise of providing model-free learning controllers for nonlinear systems; however, it is very difficult to guarantee the stability and robustness of neural network control systems. This paper proposes an adaptive neural network control for robot manipulators based on the radial basis function netwo.k (RBFN). The RBFN is a branch of the neural networks and is mathematically tractable. So we adopt the RBFN to approximate nonlinear robot dynamics. The RBFN generates control input signals based on the Lyapunov stability that is often used in the conventional control schemes. The saturation function is also chosen as an auxiliary controller to guarantee the stability and robustness of the control system under the external disturbances and modeling uncertainties.

  • PDF

Intelligent Hybrid Modular Architecture for Multi Agent System

  • Lee, Dong-Hun;Baek, Seung-Min;Kuc, Tae-Yong;Chung, Chae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.896-902
    • /
    • 2004
  • The purpose of the study of multi-robot system is to realize multi-robot system easy for the control of robot system in case robot is adapted in the complicated environment of task structure. The purpose of the study of multi-robot system is to realize multi-robot system easy for the control of robot system in case robot is adapted in the complicated environment of task structure. To make real time control possible by making effective use of recognized information in this dynamic environment, suitable distribution of tasks should be made in consideration of function and role of each performing robots. In this paper, IHMA (Intelligent Hybrid Modular Architecture) of Intelligent combined control architecture which utilizes the merits of deliberative and reactive controllers will be suggested and its efficiency will be evaluated through the adaptation of control architecture to representative multi-robot system.

  • PDF

The development of a micro robot system for robot soccer game (로봇 축구 대회를 위한 마이크로 로봇 시스템의 개발)

  • 이수호;김경훈;김주곤;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.507-510
    • /
    • 1996
  • In this paper we present the multi-agent robot system developed for participating in micro robot soccer tournament. The multi-agent robot system consists of micro robot, a vision system, a host computer and a communication module. Mcro robot are equipped with two mini DC motors with encoders and gearboxes, a R/F receiver, a CPU and infrared sensors for obstacle detection. A vision system is used to recognize the position of the ball and opponent robots, position and orientation of our robots. The vision system is composed of a color CCD camera and a vision processing unit. Host computer is a Pentium PC, and it receives information from the vision system, generates commands for each robot using a robot management algorithm and transmits commands to the robots by the R/F communication module. And in order to achieve a given mission in micro robot soccer game, cooperative behaviors by robots are essential. Cooperative work between individual agents is achieved by the command of host computer.

  • PDF

Construction of simulator for cooperative multi-robot motions (다중로보트의 동작결정을 위한 시뮬레이터 구성)

  • 김정찬;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.332-336
    • /
    • 1992
  • We describe about the graphic simulation system which supports the determination of efficient multi-robot motions during cooperation. For the construction of the simulation software for multi-robot motions, two problems are presented. First problem is that all the robot motions must be determinded using both the desired object motions and the holonomic constraints with the object. To find the robot motions combined with the various object motion path, the robot motions are derived from the desired object path instead of a master robot path. Therefore robot motions can be easily modifiable with the various object motions. This type of motion determination is different from that of the master-slaves method using the master robot motions. The other is that the developments of robot application softwares need a heavy cost when the participated robots or the tasks given to the robots are changed. Based on object-oriented programming paradigm, we present useful software objects describing robot application programming environment. The object-oriented programming paradigm increases the software reusability, reliability, and extensibility, and also provides the structual concepts to cope with the various demands of robot application programming.

  • PDF

A Study on the Control of Macro-Micro Robotic Systems (마크로-마이크로 로보트의 제어에 관한 연구)

  • 주진화;명지태;박의열;이장명
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.47-56
    • /
    • 1994
  • In this paper, we demonstrate how to design a redundant robot which is suitable for the multiple task execution without any constraints on the work space. The implementation is possible by the rigid connection of a cacro-robot and a micro-robot. A 5 d.o.f. articulated robor designed for commercial purpose is utilized as a micro-robot which can perform a general task with the appropriate adjustment of its base location. The base of a micro-robot is located at a suitable position by the macro-robot designed and implemented through this research. A task assigned to this redundant robot is performed mainly by the micro-robot. However, when the micro-robot cannot perform the task by itself or when the micro-robot has difficulties in performing the task, the coordination of the macro-robot is requited. To monitor the task execution efficiency of the micro-robot, we used the 'Manipulability Measure' as a cost function. The coordination between the two robots are verified both by the simulation and the experiment.

  • PDF

A Calibration of Kinematic Differences between the Robot Model in OLP and Actual SCARA Robot

  • Ahn, Cheol-Ki;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.111-116
    • /
    • 1998
  • In this study, we try to coincide virtual robot system in an OLP(off-line programming) with actual robot system even though kinematic differences between them are made. The virtual robot in the OLP may be modeled according to kinematics of the actual robot system. However, it is a complicated problem to find exactly all kinematic parameters of actual robot and environment. In this paper, an automated calibration method is proposed In order to find some kinematical parameters which are necessary for the modeling of a robot and environment in the OLP. It is applicable to SCARA robot for assembly task. In this method, a well-marked worktable of environment Is regarded as reference coordinate frame. The robot detects some marks on the worktable through sensors attached to the end-effector. The necessary parameters are calculated from the data of the robot joint variables when the robot detects the mark. The model in the OLP is modified by the parameters.

  • PDF

Development of Autonomous Mobile Robot with Speech Teaching Command Recognition System Based on Hidden Markov Model (HMM을 기반으로 한 자율이동로봇의 음성명령 인식시스템의 개발)

  • Cho, Hyeon-Soo;Park, Min-Gyu;Lee, Hyun-Jeong;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.726-734
    • /
    • 2007
  • Generally, a mobile robot is moved by original input programs. However, it is very hard for a non-expert to change the program generating the moving path of a mobile robot, because he doesn't know almost the teaching command and operating method for driving the robot. Therefore, the teaching method with speech command for a handicapped person without hands or a non-expert without an expert knowledge to generate the path is required gradually. In this study, for easily teaching the moving path of the autonomous mobile robot, the autonomous mobile robot with the function of speech recognition is developed. The use of human voice as the teaching method provides more convenient user-interface for mobile robot. To implement the teaching function, the designed robot system is composed of three separated control modules, which are speech preprocessing module, DC servo motor control module, and main control module. In this study, we design and implement a speaker dependent isolated word recognition system for creating moving path of an autonomous mobile robot in the unknown environment. The system uses word-level Hidden Markov Models(HMM) for designated command vocabularies to control a mobile robot, and it has postprocessing by neural network according to the condition based on confidence score. As the spectral analysis method, we use a filter-bank analysis model to extract of features of the voice. The proposed word recognition system is tested using 33 Korean words for control of the mobile robot navigation, and we also evaluate the performance of navigation of a mobile robot using only voice command.

A Human-Robot Interaction Entertainment Pet Robot (HRI 엔터테인먼트 애완 로봇)

  • Lee, Heejin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.179-185
    • /
    • 2014
  • In this paper, a quadruped walking pet robot for human-robot interaction, a robot-controller using a smart phone application program, and a home smart control system using sensor informations providing from the robot are described. The robot has 20 degree of freedom and consists of various sensors such as Kinect sensor, infrared sensor, 3 axis motion sensor, temperature/humidity sensor, gas sensor and graphic LCD module. We propose algorithms for the robot entertainment: walking algorithm of the robot, motion and voice recognition algorithm using Kinect sensor. emotional expression algorithm, smart phone application algorithm for a remote control of the robot, and home smart control algorithm for controlling home appliances. The experiments of this paper show that the proposed algorithms applied to the pet robot, smart phone, and computer are well operated.